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Syllabus

B. E. ELECTRICAL AND ELECTRONICS ENGINEERING
Choice Based Credit System (CBCS) and Outcome Based Education

(OBE)
SEMESTER - VII
POWER SYSTEM ANALYSIS - 2(Core Course)
Course Code 18EE71 CIE Marks 40
Number of Lecture Hours/Week 2:2:0 SEE Marks 60
Credits 03 Exam Hours 03

Course Learning Objectives:

e To explain formulation of network models and bus admittance matrix for solving load
flow problems.

e To discuss optimal operation of generators on a bus bar and optimum generation scheduling.

e To explain symmetrical fault analysis and algorithm for short circuit studies.

e To explain formulation of bus impedance matrix for the use in short circuit studies on power
systems.

e To explain numerical solution of swing equation for multi-machine stability

Module-1

Network Topology: Introduction and basic definitions of Elementary graph theory Tree, cut-set,
loop analysis. Formation of Incidence Matrices. Primitive network- Impedance form and admittance
form, Formation of Y Bus by Singular Transformation. Yy, by Inspection Method. Illustrative
examples. T1,2

Module-2

Load Flow Studies: Introduction, Classification of buses. Power flow equation, Operating
Constraints, Data for Load flow, Gauss Seidal iterative method. Illustrative examples. T1, R1
Module-3

Load Flow Studies(continued) Newton-Raphson method derivation in Polar form, Fast decoupled
load flow method, Flow charts of LFS methods. Comparison of Load Flow Methods. Illustrative
examples. T1,R1

Module-4

Economic Operation of Power System: Introduction and Performance curves Economic generation
scheduling neglecting losses and generator limits Economic generation scheduling including
generator limits and neglecting losses Economic dispatch including transmission losses Derivation of
transmission loss formula. lllustrative examples.T1

Unit Commitment: Introduction, Constraints and unit commitment solution by prior list method and
dynamic forward DP approach (Flow chart and Algorithm only). T3

Module-5

Symmetrical Fault Analysis: Z Bus Formulation by Step by step building algorithm without mutual
coupling between the elements by addition of link and addition of branch. Illustrative examples. Z
bus Algorithm for Short Circuit Studies excluding numerical. T1

Power System Stability: Numerical Solution of Swing Equation by Point by Point method and
Runge Kutta Method. Illustrative examples. T1
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Course Outcomes: At the end of the course the student will be able to:

Formulate network matrices and models for solving load flow problems.

Perform steady state power flow analysis of power systems using numerical iterative

techniques.
Solve issues of economic load dispatch and unit commitment problems.

Analyze short circuit faults in power system networks using bus impedance matrix.
Apply Point by Point method and Runge Kutta Method to solve Swing Equation.

Question paper pattern:

The question paper will have ten questions.
Each full question is for 20 marks.

There will be 2 full questions (with a maximum of three sub questions in one full

question) from each module.

Each full question with sub questions will cover the contents under a module.
Students will have to answer 5 full questions, selecting one full question from each module.

Module 1Y Bus Matrix size limited to 3X3 for illustrative examples.

Module 2 NR Method limited to 3 bus system with one iteration for illustrative examples.

Text Books
1 Modern Power System Analysis D Pl\ﬁcgpaat[:’ 1 McGraw Hill 4th Edition, 2011
i Scientific
Computer Methods in Power Glenn W. Stagg : ot = qigs
2 Systems Analysis Ahmed H Ei - Abiad International 1* Edition, 2019
Pvt. Ltd.
3 Power Generation Operation and Allen J Wood etal Wiley 2" Edition,2016
Control
Reference Books
Computer Techniques in Power . . d =iz
1 System Analysis M.A. Pai McGraw Hill 2" Edition, 2012
2 Power System Analysis Hadi Saadat McGraw Hill 2ndEdition, 2002
Computer Techniques and Models IK
3 in Power System Analysis K. Uma Rao International 2013
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Course Outcomes

Co1 Formulate network matrices and models for solving load flow problems.

CO2 Perform power flow analysis of power systems using numerical iterative techniques

CO3 | Solve issues of economic load dispatch and unit commitment problems

CO4 | Analyze short circuit faults in power system networks using bus impedance matrix

CO5 | Apply numerical techniques to solve swing equation for stability analysis.

CO-PO-PSO articulation Matrix

POs
COs
1 2 3 4 5 6 7 8 9 10 11 12
Co1 3 3
CO2 3 3 2
CO3 3 2 2 1
CO4 3 2
CO5 3 2 1
PSOs
COs
1 2 3
Co1 3 2
CO2 3 2
CO3 3 2
CO4 3 2
CO5 3 2
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Module 1

Network Topology
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1.1. Introduction

The solution of a given linear network problem requires the formation of a set of equations describing
the response of the network. The mathematical model so derived, must describe the characteristics of the
individual network components, as well as the relationship which governs the interconnection of the
individual components. In the bus frame of reference the variables are the node voltages and node currents.
The independent variables in any reference frame can be either currents or voltages. Correspondingly, the
coefficient matrix relating the dependent variables and the independent variables will be either an impedance
or admittance matrix. The formulation of the appropriate relationships between the independent and
dependent variables is an integral part of a digital computer program for the solution of power system
problems. The formulation of the network equations in different frames of reference requires the knowledge
of graph theory. Elementary graph theory concepts are presented here, followed by development of network

equations in the bus frame of reference.

1.2. Elementary Linear Graph Theory: Important Terms

The geometrical interconnection of the various branches of a network is called the topology of the
network. The connection of the network topology, shown by replacing all its elements by lines is called a
graph. A linear graph consists of a set of objects called nodes and another set called elements such that each
element is identified with an ordered pair of nodes. An element is defined as any line segment of the graph
irrespective of the characteristics of the components involved. A graph in which a direction is assigned to
each element is called an oriented graph or a directed graph. It is to be noted that the directions of currents in
various elements are arbitrarily assigned and the network equations are derived, consistent with the assigned
directions. Elements are indicated by numbers and the nodes by encircled numbers. The ground node is
taken as the reference node. In electric networks the convention is to use associated directions for the voltage
drops. This means the voltage drop in a branch is taken to be in the direction of the current through the

branch. Hence, we need not mark the voltage polarities in the oriented graph.

Connected Graph: This is a graph where at least one path (disregarding orientation) exists between any two

nodes of the graph. A representative power system and its oriented graph are as shown in Fig 1.1, with:

e = number of elements = 6

n = number of nodes =4

b = number of branches =n-1=3
| = number of links =e-b =3
Tree =T(1,2,3) and
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Co-tree = T(4,5,6)
Sub-graph: Sg is a sub-graph of G if the following conditions are satisfied:

- Sg is itself a graph
- Every node of Sg is also a node of G

- Every branch of Sg is a branch of G

(¥

t

Fig 1.1: Single line diagram of a power system

Fig 1.3: Oriented graph

Department of EEE, SJBIT 6
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Cutset: It is a set of branches of a connected graph G which satisfies the following conditions:

o The removal of all branches of the cutset causes the remaining graph to have two separate

unconnected sub-graphs.

« The removal of all but one of the branches of the set, leaves the remaining graph connected.
Referring to Fig 1.3, the set {3,5,6} constitutes a cutset since removal of them isolates node 3 from rest of
the network, thus dividing the graph into two unconnected subgraphs. However, the set(2,4,6) is not a valid
cutset! The KCL (Kirchhoff’s Current Law) for the cutset is stated as follows: In any lumped network, the

algebraic sum of all the branch currents traversing through the given cutset branches is zero.

Tree: It is a connected sub-graph containing all the nodes of the graph G, but without any closed paths
(loops). There is one and only one path between every pair of nodes in a tree. The elements of the tree are

called twigs or branches. In a graph with n nodes,

The number of branches: b =n-1 (@D)]
For the graph of Fig 1.3, some of the possible trees could be T(1,2,3), T(1,4,6), T(2,4,5), T(2,5,6), etc.

Co-Tree : The set of branches of the original graph G, not included in the tree is called the co-tree. The co-
tree could be connected or non-connected, closed or open. The branches of the co-tree are called links. By
convention, the tree elements are shown as solid lines while the co-tree elements are shown by dotted lines

as shown in Fig.1c for tree T(1,2,3). With e as the total number of elements,

The number of links: | =e—b=e-n+1 (@)

For the graph of Fig 1.3, the co-tree graphs corresponding to the various tree graphs are as shown in the table

below:

Tree T(1,2.3) | T(1.4.6) | T(24,5) | T(2.,5,6)
Co-Tree | T(4,5.6) | T(2,3.5) | T(1.3,6) | T(1.3.4)

Basic loops: When a link is added to a tree it forms a closed path or a loop. Addition of each
subsequent link forms the corresponding loop. A loop containing only one link and remaining
branches is called a basic loop or a fundamental loop. These loops are defined for a particular tree.
Since each link is associated with a basic loop, the number of basic loops is equal to the number of

links.

Basic cut-sets: Cut-sets which contain only one branch and remaining links are called basic cutsets
or fundamental cut-sets. The basic cut-sets are defined for a particular tree. Since each branch is

associated with a basic cut-set, the number of basic cut-sets is equal to the number of branches.
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Examples

Example-1: Obtain the oriented graph for the system shown in Fig. E1. Select any four possible
trees. For a selected tree show the basic loops and basic cut-sets.

Fig. Elc. Basic Cutsets of Fig. Ela.
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For the system given, the oriented graph is as shown in figure E1b. some of the valid Tree graphs could be
T(1,2,3,4), T(3,4,8,9), T(1,2,5,6), T(4,5,6,7), etc. The basic cutsets (A,B,C,D) and basic loops (E,F,G,H,I)
corresponding to the oriented graph of Fig.Ela and tree, T(1,2,3,4) are as shown in Figure Elc and Fig.E1d

respectively.

Fig. E1d. Basic Loops of Fig. Ela.

1.3. Incidence Matrices

Element—node incidence matrix; A™

The incidence of branches to nodes in a connected graph is given by the element-node incidence

matrix,A" .

An element aij of A" is defined as under:

aij = 1 if the branch-i is incident to and oriented away from the node-j.
= -1 if the branch-i is incident to and oriented towards the node-j.
= 0 if the branch-i is not at all incident on the node-j.

Thus the dimension of A" is exn, where e is the number of elements and n is the number of nodes in the
network. For example, consider again the sample system with its oriented graph as in fig. 1.3 the

corresponding element-node incidence matrix, is obtained as under:

Department of EEE, SJBIT 9
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Nodes
Elements
1 1 -1

2 I -1

n
I

It is to be noted that the first column and first row are not part of the actual matrix and they only indicate
the element number node number respectively as shown. Further, the sum of every row is found to be equal
to zero always. Hence, the rank of the matrix is less than n. Thus in general, the matrix A" satisfies the

identity:

n

Z Elij=0 vV i=1.2,.....e. (3)
=i

Bus incidence matrix: A

By selecting any one of the nodes of the connected graph as the reference node, the corresponding
column is deleted from A" to obtain the bus incidence matrix, A. The dimensions of A are e (n-1) and the
rank is n-1. In the above example, selecting node-0 as reference node, the matrix A is obtained by deleting

the column corresponding to node-0, as under:

Buses
1 2 3
Elements
1 -1
2 -1 A, | Branches
A=| 3 1=
4 | -1
5 | -1 A Links
6 1 -1
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It may be observed that for a selected tree, say, T(1,2,3), the bus incidence matrix can be so arranged that the
branch elements occupy the top portion of the A-matrix followed by the link elements. Then, the matrix-A
can be partitioned into two sub matrices Ab and Al as shown, where,

() Ab is of dimension (bxb) corresponding to the branches and

(i) Alis of dimension (Ixb) corresponding to links.

A is a rectangular matrix, hence it is singular. Ab is a non-singular square matrix of dimension-b. Since A
gives the incidence of various elements on the nodes with their direction of incidence, the KCL for the nodes

can be written as

ATi=0 (4)
where AT is the transpose of matrix A and i is the vector of branch currents. Similarly for the branch
voltages we can write,

v=AbusE (5)

Examples on Bus Incidence Matrix:

Example-2: For the sample network-oriented graph shown in Fig. E2, by selecting a tree, T(1,2,3,4),
obtain the incidence matrices A and A" . Also show the partitioned form of the matrix-A.

Fig. E2. Sample Network-Oriented Graph
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Example-3: For the sample-system shown in Fig. E3, obtain an oriented graph. By selecting a tree,

o '@
‘@

®) T

Fig. E3a. Sample Example network

T(1,2,3,4), obtain the incidence matrices A andA” . Also show the partitioned form of the matrix-A.

Consider the oriented graph of the given system as shown in figure E3b, below.

Fig. E3Db. Oriented Graph of system of Fig-E3a.

Corresponding to the oriented graph above and a Tree, T(1,2,3,4), the incidence matrices * and A can be

obtained as follows:

en(0(1]2]3]4 e\b| 1 (234

1| 1]-] 1 |-1

2 |1 -1 2 -1
A=1]3 |1 -1 A=|3 -1

4 |1 -1 4 -1

5 1 -1 5 1 [-1

6 -1 1 6 -1

7 1 [-1 7 |1 ]-1

8 -1 1 8 - I

9 -1 1 9 |-1 1
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Corresponding to the Tree, T(1,2,3,4), matrix-A can be partitioned into two submatrices as under:

eb| 12|34 eb| 1 ]2 3|4
1 | -1 5 I | -1
A= 2 -1 Aj=| 6 -1 1
3 -1 7 11 |-1
4 - 8 -1 1
9 |-1 1

1.4. Primitive Networks

So far, the matrices of the interconnected network have been defined. These matrices contain
complete information about the network connectivity, the orientation of current, the loops and cutsets.
However, these matrices contain no information on the nature of the elements which form the
interconnected network. The complete behaviour of the network can be obtained from the knowledge
of the behaviour of the individual elements which make the network, along with the incidence
matrices. An element in an electrical network is completely characterized by the relationship between
the current through the element and the voltage across it.

General representation of a network element: In general, a network element may contain
active or passive components. Figure 2 represents the alternative impedance and admittance forms of

representation of a general network component.

Ep P » Ep P

Y

(ipg+ jpg)

Jpa

Vpg = Ep - Eq Ypg

Eq, q v E, q

Fig.2 Representation of a primitive network element (a) Impedance form (b) Admittance form
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The network performance can be represented by using either the impedance or the admittance form of

representation. With respect to the element, p-q, let,

vpq = voltage across the element p-q,

epq = source Vvoltage in series with the element p-g, ipg= current through the element p-q,
jpg= source current in shunt with the element p-qg, zpg= self impedance of the element p-q and
ypg= self admittance of the element p-q.

Performance equation: Each element p-q has two variables, Vpqg and ipg. The performance of the given

element p-g can be expressed by the performance equations as under:
vpg + epq = zpqipq (in its impedance form)
ipg + jpg = ypqvpq (in its admittance form) (6)

Thus the parallel source current jpg in admittance form can be related to the series source voltage, epq in

impedance form as per the identity:

jpa = - ypq epq ()
A set of non-connected elements of a given system is defined as a primitive Network and an element in it is a
fundamental element that is not connected to any other element. In the equations above, if the variables and

parameters are replaced by the corresponding vectors and matrices, referring to the complete set of elements

present in a given system, then, we get the performance equations of the primitive network in the form as

under:
v+e=|[z]i
i+j=[ylv (8)

Primitive network matrices:
A diagonal element in the matrices, [z] or [y] is the self impedance zpg-pq or self admittance, ypg-pg. An
off-diagonal element is the mutual impedance, zpg-rs or mutual admittance, ypg-rs, the value present as a

mutual coupling between the elements p-q and r-

s. The primitive network admittance matrix, [y] can be obtained also by inverting the primitive impedance
matrix, [z]. Further, if there are no mutually coupled elements in the given system, then both the matrices, [z]
and [y] are diagonal. In such cases, the self impedances are just equal to the reciprocal of the corresponding

values of self admittances, and vice-versa.
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Examples on Primitive Networks:
Example-4: Given that the self impedances of the elements of a network referred by the bus incidence
matrix given below are equal to: Z1=72=0.2, Z3=0.25, Z4=75=0.1 and Z6=0.4 units, draw the

corresponding oriented graph, and find the primitive network matrices. Neglect mutual values between the
elements.

-1 0 0
0 -1 0
A= 0 0 -1
1 -1 0
0 1 -1
1 0 -1

Solution:

The element node incidence matrix, A" can be obtained from the given A matrix, by pre- augmenting to it

an extra column corresponding to the reference node, as under.

1 -1 0 0
1 0 -1 0
A= 1 0 0 -1
0 1 -1 0
0 0 1 -1
0 1 0 -1

Based on the conventional definitions of the elements of A™, the oriented graph can be formed as under:
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\H\-\. .-z.'f
Fig. E4 Oriented Graph
Thus the primitive network matrices are square, symmetric and diagonal matrices of order e=no.
of elements = 6. They are obtained as follows.
0.2 O 0 0 0 0
0 0.2 0 0 0 0
[z] = 0 0 0.25 0 0 0
0 0 0 0.1 0 0
0 0 0 0 0.1 0
0 0 0 0 0 0.4
And
5.0 0 0 0 0 0
0 5.0 0 0 0 0
[v]= 0 0 4.0 0 0 0
0 0 0 10 0 0
0 0 0 0 10 0
0 0] O 0 0 2.5
Department of EEE, SJBIT 17
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Example-5: Consider three passive elements whose data is given in Table E5 below. Form the primitive

network impedance matrix.

Self impedance (z;qpq) Mutual impedance, (Zpqrs)
Element
. Bus-code, Impedance in Bus-code, Impedance in
numbe1
(p-q) p.u. (r-s) p-u.
1 1-2 j0.452
2 2-3 j0.387 1-2 j0.165
3 1-3 j0.619 1-2 j0.234
Solution:
1-2 2-3 1-3
1-2 | j0.452 |j0.165 | j 0.234
[z]= 2-3|j0.165|j0387 | 0
1-3]j0.234 0 j0.619
Note:

- The size of [z] ise” e, where e= number of elements,
- The diagonal elements are the self impedances of the elements
- The off-diagonal elements are mutual impedances between the corresponding elements.

- Matrices [z] and [y] are inter-invertible.
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1.5. Formation of Ybus And Zbus

The bus admittance matrix, YBUS plays a very important role in computer aided power system

analysis. It can be formed in practice by either of the methods as under:

1. Rule of Inspection

2. Singular Transformation

3. Non-Singular Transformation

4. ZBUS Building Algorithms, etc.

The performance equations of a given power system can be considered in three different frames of reference

as discussed below:

Frames of Reference:
Bus Frame of Reference: There are b independent equations (b = no. of buses) relating the bus vectors of

currents and voltages through the bus impedance matrix and bus admittance matrix:
EBUS = ZBUS IBUS
IBUS = YBUS EBUS 9)

Branch Frame of Reference: There are b independent equations (b = no. of branches of a selected Tree sub-
graph of the system Graph) relating the branch vectors of currents and voltages through the branch

impedance matrix and branch admittance matrix:
EBR =ZBR IBR

IBR = YBR EBR (10)

Loop Frame of Reference: There are b independent equations (b = no. of branches of a selected Tree sub-
graph of the system Graph) relating the branch vectors of currents and voltages through the branch

impedance matrix and branch admittance matrix:
ELOOP =ZLOOP ILOOP
ILOOP = YLOOP ELOOP (1)

Of the various network matrices refered above, the bus admittance matrix (YBUS) and the bus impedance

matrix (ZBUS) are determined for a given power system by the rule of inspection as explained next.

Department of EEE, SJBIT 19
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1.5.1. Rule of Inspection

Consider the 3-node admittance network as shown in figure5. Using the basic branch relation:

I = (YV), for all the elemental currents and applying Kirchhoff’s Current Law principle at the
nodal points, we get the relations as under:

Atnode 1: 11 =Y1V1 + Y3 (V1-V3) + Y6 (V1 - V2)
At node 2: 12 =Y2V2 + Y5 (V2-V3) + Y6 (V2 - V1)
Atnode 3: 0 = Y3 (V3-V1) + Y4V3 + Y5 (V3 - V2) (12)

B —" N

@ = NN >

3 s |
& Y\ 7a Ya. Iy

Fig. 3 Example System for finding YBUS

These are the performance equations of the given network in admittance form and they can
be represented in matrix form as:

l] = {YH—Y; +Y.5,} 'Y.f, ‘Y3 V]
[, = -Ys (Y+Y5+Ys) -Ys V,
0 = -Y; -Ys (Y3 4+Y44Ys) V3 (13}

In other words, the relation of equation (9) can be represented in the form

IBUS = YBUS EBUS (14)

Where, YBUS is the bus admittance matrix, IBUS & EBUS are the bus current and bus voltage vectors
respectively. By observing the elements of the bus admittance matrix, YBUS of equation (13), it is observed

that the matrix elements can as well be obtained by a simple inspection of the given system diagram:

Diagonal elements: A diagonal element (Yii) of the bus admittance matrix, YBUS, is equal to the sum total

of the admittance values of all the elements incident at the bus/node i,
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Off Diagonal elements: An off-diagonal element (Yij) of the bus admittance matrix, YBUS, is equal to the
negative of the admittance value of the connecting element present between the buses | and j, if any. This is
the principle of the rule of inspection. Thus the algorithmic equations for the rule of inspection are obtained

as.
Yii=Svyij (G=1,2........n)
Yij=-yij (i=1.2,.......n) (15)

For i =1,2,....n, n = no. of buses of the given system, yij is the admittance of element connected between

buses i and j and yii is the admittance of element connected between bus i and ground (reference bus).

Bus impedance matrix:

In cases where, the bus impedance matrix is also required, it cannot be formed by direct inspection of the
given system diagram. However, the bus admittance matrix determined by the rule of inspection following
the steps explained above, can be inverted to obtain the bus impedance matrix, since the two matrices are

interinvertible.

Note: It is to be noted that the rule of inspection can be applied only to those power systems that do

not have any mutually coupled elements.

Examples on Rule of Inspection:

Example 6: Obtain the bus admittance matrix for the admittance network shown aside by the rule of

inspection
@ i4 @
©—1 m @
16 -8 -4 (\L\-— &8 &) l%) 88 BsA‘
i b SRS S
-4 -8 16
4

Example 7: Obtain YBUS for the impedance network shown aside by the rule of inspection. Also,
determine YBUS for the reduced network after eliminating the eligible unwanted node. Draw the

resulting reduced system diagram.
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1.5.2. Singular Transformations

The primitive network matrices are the most basic matrices and depend purely on the impedance or
admittance of the individual elements. However, they do not contain any information about the behaviour
of the interconnected network variables. Hence, it is necessary to transform the primitive matrices into

more meaningful matrices which can relate variables of the interconnected network.

Bus admittance matrix, YBUS and Bus impedance matrix, ZBUS
In the bus frame of reference, the performance of the interconnected network is described by n independent
nodal equations, where n is the total number of buses (n+1nodes are present, out of which one of them is

designated as the reference node).

For example a 5-bus system will have 5 external buses and 1 ground/ ref. bus). The performance equation
relating the bus voltages to bus current injections in bus frame of reference in admittance form is given by

IBUS = YBUS EBUS 17)

Where EBUS = vector of bus voltages measured with respect to reference bus IBUS = Vector of currents

injected into the bus
YBUS = bus admittance matrix
The performance equation of the primitive network in admittance form is given by i + j=[y] v
Pre-multiplying by At (transpose of A), we obtain
Ati+Atj=At[y]v (18)
However, as per equation (4),
Ati =0,

since it indicates a vector whose elements are the algebraic sum of element currents incident at a bus, which
by Kirchhoff’s law is zero. Similarly, At j gives the algebraic sum of all source currents incident at each bus

and this is nothing but the total current injected at the bus. Hence,

Atj = IBUS (19)
Thus from (18) we have, IBUS = At [y] v (20)
However, from (5), we have v =A EBUS

And hence substituting in (20) we get,

IBUS = At [y] A EBUS (21)

Comparing (21) with (17) we obtain,
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YBUS = At [y] A (22)

The bus incidence matrix is rectangular and hence singular. Hence, (22) gives a singular transformation of

the primitive admittance matrix [y]. The bus impedance matrix is given by,

ZBUS = YBUS™ (23)

Note: This transformation can be derived using the concept of power invariance, however, since the

transformations are based purely on KCL and KVL, the transformation will obviously be power invariant.

Examples on Singular Transformation:

Example 8: For the network of Fig E8, form the primitive matrices [z] & [y] and obtain the bus admittance

matrix by singular transformation. Choose a Tree T(1,2,3). The data is given in Table ES8.

® 2 @®

[ B

is

k _.: .:
! 1 i

Fig E8 System for Example-8 Table E8: Data for Example

Elements | Self impedance | Mutual impedance
1 j 0.6 -
2 j0.5 j 0.1(with element 1)
3 j0.5 -
4 0.4 j 0.2 (with element 1)
5 0.2 -
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Solution:
The bus incidence matrix is formed taking node 1 as the reference bus.

-1 0 0
0 -1 0
A=|0 -1
-1 0 0
10 -1

The primitive incidence matrix is given by

[j0.6 jo.1 00 02 0.0]
jO.1 j0.5 00 0.0 0.0
lz]=| 0.0 00 j05 00 00
j02 0.0 00 jo4 0.0
00 0.0 00 00 j02]

The primitive admittance matrix [y] = [z]-1 and given by,

[— j2.0833  j0.4167 0.0 Jj1.0417 0.0
Jj0.4167  —j52.0833 00 —j0.2083 0.0

lyl=| 0.0 00 -j20 00 0.0
jl.O417 - j0.2083 0.0 —j3.0208 0.0
0.0 0.0 0.0 00  —j50]

The bus admittance matrix by singular transformation is obtained as

—j8.0208  j0.2083  j5.0
Yaus=A'[y| A = | j0.2083 —j4.0833 j2.0
5.0 j20 = j1.0

j0.2713  j0.1264  j0.2299
Zsus = Yaus' = | jO.1264 j0.3437 j0.1885
j0.2299  j0.1885 j0.3609
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2.1. Introduction

Load flow studies are important in planning and designing future expansion of power systems. The
study gives steady state solutions of the voltages at all the buses, for a particular load condition. Different
steady state solutions can be obtained, for different operating conditions, to help in planning, design and
operation of the power system. Generally, load flow studies are limited to the transmission system, which
involves bulk power transmission. The load at the buses is assumed to be known. Load flow studies throw
light on some of the important aspects of the system operation, such as: violation of voltage magnitudes at
the buses, overloading of lines, overloading of generators, stability margin reduction, indicated by power
angle differences between buses linked by a line, effect of contingencies like line voltages, emergency
shutdown of generators, etc. Load flow studies are required for deciding the economic operation of the
power system. They are also required in transient stability studies. Hence, load flow studies play a vital role
in power system studies. Thus the load flow problem consists of finding the power flows (real and reactive)
and voltages of a network for given bus conditions. At each bus, there are four quantities of interest to be
known for further analysis: the real and reactive power, the voltage magnitude and its phase angle. Because
of the nonlinearity of the algebraic equations, describing the given power system, their solutions are

obviously, based on the iterative methods only. The constraints placed on the load flow solutions could be:
e The Kirchhoff’s relations holding good,
e Capability limits of reactive power sources,
e Tap-setting range of tap-changing transformers,
e Specified power interchange between interconnected systems,

e Selection of initial values, acceleration factor, convergence limit, etc.

2.2. Classification of buses

Different types of buses are present based on the specified and unspecified variables at a given bus as

presented in the table below:

SL . Specified | Unspecified
No. Bus Types Variables variables Remarks
Slack/ [V|, &: are assumed if not
1 : \% P ’
Swing Bus ¥ & . specified as 1.0 and 0°
Generator/ A generator is present at the
o) &
~ | Machine/ PV Bus Pg, [V Q. 8 machine bus
3 Load/ PQ Bus Pe. Qo VI, gll))zut 80% buses are of PQ
Voltage ‘a’ is the % tap change in
4 Controlled Bus Pg,Qc, VI 6, tap-changing transformer
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Importance of swing bus: The slack or swing bus is usually a PV-bus with the largest capacity generator of
the given system connected to it. The generator at the swing bus supplies the power difference between the
“specified power into the system at the other buses” and the “total system output plus losses”. Thus swing
bus is needed to supply the additional real and reactive power to meet the losses. Both the magnitude and
phase angle of voltage are specified at the swing bus, or otherwise, they are assumed to be equal to 1.0 p.u.
and 00, as per flat-start procedure of iterative solutions. The real and reactive powers at the swing bus are
found by the computer routine as part of the load flow solution process. It is to be noted that the source at the
swing bus is a perfect one, called the swing machine, or slack machine. It is voltage regulated, i.e., the
magnitude of voltage fixed. The phase angle is the system reference phase and hence is fixed. The generator
at the swing bus has a torque angle and excitation which vary or swing as the demand changes. This
variation is such as to produce fixed voltage.

2.3. The Load Flow Problem and Power Flow Equations

Here, the analysis is restricted to a balanced three-phase power system, so that the analysis can be
carried out on a single phase basis. The per unit quantities are used for all quantities. The first step in the
analysis is the formulation of suitable equations for the power flows in the system. The power system is a
large interconnected system, where various buses are connected by transmission lines. At any bus, complex
power is injected into the bus by the generators and complex power is drawn by the loads. Of course at any
bus, either one of them may not be present. The power is transported from one bus to other via the

transmission lines. At any bus i, the complex power Si (injected), shown in figure 1, is defined as

Si= Sai — Spi @

PijQs PeitiQei

Bus-i — I <5
L | PpiiQps
System in o
bus Frame A G
of Reference
D
Ref. Bus I

Fig.1 power flows at a bus-i

where Si = net complex power injected into bus i, SGi = complex power injected by the generator at bus i,
and SDi = complex power drawn by the load at bus i. According to conservation of complex power, at any
bus i, the complex power injected into the bus must be equal to the sum of complex power flows out of the

bus via the transmission lines. Hence,
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Si= Sij"i=1,2 n 3)

where Sij is the sum over all lines connected to the bus and n is the number of buses in the system
(excluding the ground). The bus current injected at the bus-i is defined as

li=IGi—IDi"i=12,........... n (4)

where 1Gi is the current injected by the generator at the bus and IDi is the current drawn by the load

(demand) at that bus. In the bus frame of reference

IBUS = YBUS VBUS (5)
where
e
2
Igus= | . is the vector of currents injected at the buses,
I"

Ygrus is the bus admittance matrix, and
vl
VZ

Vgus = | . is the vector of complex bus voltages.
Vﬂ

Equation (5) can be considered as
Ij= Z]Y”Vf ¥ i= 00 n (6)
=

The complex power S; is given by
Si = Vi I:

*

= Vi ( " Y;v;) @)
j=1
Let V.AV,|£ 6, =|v|(cos &, + jsin &,)
5!1 B 6;—51

Department of EEE, SJBIT 4



| Power System Analysis-2 (18EE71) 2021-22

Y; =Gy +JB;

Hence from (7), we get,
Si= ). |V,
i=1

Separating real and imaginary parts in (8) we obtain,

V)| cos 8, + jsing,) (G, - jB;) 8)

P, = i[V, IVJ.| (G,.j cosd; + By sin é',.j) 9)
j=1
Qi= 3|V V| (G;sin6, - B,coss,) (10)

j=1
An alternate form of P; and Q; can be obtained by representing Yj also in polar form
as Yy= K|z, (11)

Again, we get from (7),

- IV,~|4<5,i |Y,.j
j=1

£-6;V,|£-8, (12)

The real part of (12) gives P;.

B=[v)| i Y| Vi cos(-6; + & - &)
J=I
7 V| cos— (8, — 6, +6)) or
j=1
P=>| V||t cos@; - 6+8,)  Vi=1,2......... n, (13)

=

Similarly, Q; is imaginary part of (12) and is given by

Qizlvi

§|Yii| V)| sin-(8;- &,+6)) or

V,

V| [¥|sin@; - 8+6) Vi=1,2. n (14)

o :__Zn:

=1
Equations (9)-(10) and (13)-(14) are the ‘power flow equations’ or the ‘load flow equations’ in two

alternative forms, corresponding to the n-bus system, where each bus-i is characterized by four variables, Pi,

Qi, |Vi|, and di. Thus a total of 4n variables are involved in these equations. The load flow equations can be
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solved for any 2n unknowns, if the other 2n variables are specified. This establishes the need for

classification of buses of the system for load flow analysis into: PV bus, PQ bus, etc.

2.4. Data for Load Flow

Irrespective of the method used for the solution, the data required is common for any load flow. All

data is normally in pu. The bus admittance matrix is formulated from these data. The various data required

are as under:
1. System data: It includes:

e Number of buses-n,

e Number of PV buses,

e Number of loads,

e Number of transmission lines,

e Number of transformers,

e Number of shunt elements,

e The slack bus number,

¢ Voltage magnitude of slack bus (angle is generally taken as 00),
e Tolerance limit,

e Base MVA and

e Maximum permissible number of iterations.

2. Generator bus data: For every PV bus i, the data required includes the

e Bus number,

e Active power generation Pai,

e The specified voltage magnitude

e Minimum reactive power limit Qi,min, and

e Maximum reactive power limit Qi,max.
3. Load data: For all loads the data required includes the

e Bus number,
e Active power demand Poi, and
e The reactive power demand Qoi.

4. Transmission line data: For every transmission line connected between buses i and k the data

includes the
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e Starting bus number i,
e Ending bus number Kk,
e Resistance of the line,
e Reactance of the line and

e Half line charging admittance.

5. Transformer data: For every transformer connected between buses i and k the data to be given

includes:

e Starting bus number i,

e Ending bus number k,

e Resistance of the transformer,

e Reactance of the transformer, and

e The off nominal turns-ratio a.
6. Shunt element data: The data needed for the shunt element includes:

e The bus number where element is connected, and
e The shunt admittance (Gsh + j Bsh).

2.5. Gauss — Seidel (GS) Method

The GS method is an iterative algorithm for solving nonlinear algebraic equations. An initial solution

vector is assumed, chosen from past experiences, statistical data or from practical considerations. At every
subsequent iteration, the solution is updated till convergence is reached. The GS method applied to power
flow problem is as discussed below.

Case (a): Systems with PQ buses only:

Initially assume all buses to be PQ type buses, except the slack bus. This means that (n—1) complex
bus voltages have to be determined. For ease of programming, the slack bus is generally numbered as bus-1.
PV buses are numbered in sequence and PQ buses are ordered next in sequence. This makes programming
easier, compared to random ordering of buses. Consider the expression for the complex power at bus-i, given

from Equation (7), as:
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This can be written as
St [ZYU VJ.J (15)
j=1

Since S; =P;—jQ;, we get,

F-JO _~
== 2L Y,
i j=1
So that,
n
Pi_;]Qizyl-i V, +Z Yl] VJ (16)
v i
IER
Rearranging the terms, we get,
Vie L |52 sy vi| Vi=23... n (17)

Equation (17) is an implicit equation since the unknown variable, appears on both sides of the
equation. Hence, it needs to be solved by an iterative technique. Starting from an initial estimate of
all bus voltages, in the RHS of (17) the most recent values of the bus voltages is substituted. One
iteration of the method involves computation of all the bus voltages. In Gauss—Seidel method, the
value of the updated voltages are used in the computation of subsequent voltages in the same
iteration, thus speeding up convergence. Iterations are carried out till the magnitudes of all bus
voltages do not change by more than the tolerance value. Thus the algorithm for GS method is as

under:

2.5.1. Algorithm for GS method
1. Prepare data for the given system as required.
2. Formulate the bus admittance matrix YBUS. This is generally done by the rule of inspection.
3. Assume initial voltages for all buses, 2,3,...n. In practical power systems, the magnitude of the
bus voltages is close to 1.0 p.u. Hence, the complex bus voltages at all (n-1) buses (except slack
bus) are taken to be 1.0010°. This is normally refered as the flat start solution.

4. Update the voltages. In any (k +1)st iteration, from (17) the voltages are given by
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Vo o 1 R;(UJQL = 2)1’,],\/1,(**“ = XYM | %1223, .0 (18)
Y. | V;7) j=1 J=itl

Here note that when computation is carried out for bus-i, updated values are already available for buses
2,3....(1-1) in the current (k+1)st iteration. Hence these values are used. For buses (i+1).....n, values from

previous, kth iteration are used.

AVED| = [y E v B < g Vi=23,.n (19)

Where, £ is the tolerance value. Generally it is customary to use a value of 0.0001 pu. Compute slack bus

power after voltages have converged using (15) [assuming bus 1 is slack bus].
* * D |
$,=Pi - jQi =V |D.1,V, (20)
=

5. Compute all line flows.

6. The complex power loss in the line is given by Sik + Ski. The total loss in the system is calculated

by summing the loss over all the lines.

Case (b): Systems with PV buses also present:

At PV buses, the magnitude of voltage and not the reactive power is specified. Hence it is needed to

first make an estimate of Qi to be used in (18). From (15) we have

Qi=—1Im {V,. ZIY] V]}
=
Where Im stands for the imaginary part. At any (k+1)" iteration, at the PV bus-i,
i-1 n
0™ =—Im {(V,-‘“Y 2 Y Vi + vy 2, V}"’} 21
j=1 j=i

The steps for i PV bus are as follows:
I. Compute Q" using (21)
2. Calculate V; using (18) with Q; = Q¥

3. Since ]V,| is specified at the PV bus, the magnitude of V; obtained in step 2
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V.

i,sp

LB (22)

has to be modified and set to the specified value . Therefore,

(k+1) __
P

Vi Sp

The voltage computation for PQ buses does not change.

Case (c): Systems with PV buses with reactive power generation limits specified:

In the previous algorithm if the Q limit at the voltage controlled bus is violated during any iteration,
i.e (k +1) i Q computed using (21) is either less than Qi, min or greater than Qi,max, it means that the
voltage cannot be maintained at the specified value due to lack of reactive power support. This bus is then

treated as a PQ bus in the (k+1)st iteration and the voltage is calculated with the value of Qi set as follows:

If Qi < Qi,min If Qi > Qi,max
Then Qi = Qimin. Then Qi = Qimax.
(23)

If in the subsequent iteration, if Qi falls within the limits, then the bus can be switched back to PV status.

Acceleration of convergence

It is found that in GS method of load flow, the number of iterations increase with increase in the size
of the system. The number of iterations required can be reduced if the correction in voltage at each bus is
accelerated, by multiplying with a constant o, called the acceleration factor. In the (k+1)st iteration we can

let

V% (accelerate d) = VX + a (Vi(k-.hl) _ Vi(k)) (24)

where o is a real number. When o =1, the value of (k +1) is the computed value. If 1<a<2 then the value
computed is extrapolated. Generally « is taken between 1.6 to 2.0, for GS load flow procedure. At PQ buses
(pure load buses) if the voltage magnitude violates the limit, it simply means that the specified reactive

power demand cannot be supplied, with the voltage maintained within acceptable limits.
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2.6. Examples on GS load flow analysis

Example-1: Obtain the voltage at bus 2 for the simple system shown in Fig 2, using
the Gauss—Seidel method, if V; = 1 £ 0’ pu.

@EQT ] ﬁ@

$p2=0.5+j1

Fig : System of Example 1
Solution:
Here the capacitor at bus 2, injects a reactive power of 1.0 pu. The complex power
injection at bus 2 is
S, =jl.0—-(0.5+j 1.0)=—0.5 pu.
Vi=1£0

Ygus = |: i

V(k+l) s L Pz - JQZ —Y.. V.
2 Y (V(I‘))* 21. %1
22 2

Since V, is specified it is a constant through all the iterations. Let the initial voltage at

bus2, V. =1+j0.0=120°pu.

A [ 0.5 (;2><140“)}

—j211.20°

= 1.0 —j0.25 = 1.030776 £ — 14.036"

V2= I_ —0. ——(j2x1.20°)
— 2| 1.030776.£14.036

=0.94118—0.23529 =0.970145 £ —14.036"
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yr= 1 0.5 __(j2x120°)
—J210.970145£14.036
= 0.9375-j0.249999 =0.9702061 Z-14.931°
yr = —0.5 _—(j2x120°)
— j210.970261£14.931
=0.933612 —j 0.248963 = 0.966237 Z-14.931°
ys- L 9 (jax120)
—j210.966237/14.931
=0.933335-j0.25 =0.966237 Z—14.995°
Since the difference in the voltage magnitudes is less than 10~* pu, the iterations can be stopped.
To compute line flow,
;v 1£0° — 0.966237 £ —14.995°
vz, jo.5
=0.517472 £ -14.931°
S, =VI,=120"x0517472 £ 14.931°
=0.5+70.133329 pu
; _Va-Vi_ 09662372 14.995° —12£0°
A j0.3
= 0.517472 £ -194.93°
S, =V,I;,,=—0.5+j0.0pu
The total loss in the line is given by
S12 + S22 = j 0.133329 pu
Obviously, it is observed that there is no real power loss, since the line has no resistance.
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Example-2: For the power system shown in fig. below, with the data as given in tables
below, obtain the bus voltages at the end of first iteration, by applying GS method.

o (@

G (2) G

Gl o

Power System of Example 2

Line data of example 2

R X | Be
(pu) | (pu) | 2
0.10 | 040 | -
0.15 | 0.60 | -
0.05 | 0.20 | -
0.05 | 0.20 | -
0.10 | 040 | -
0.05 | 0.20 | -

W
=

EB

| B |Wlal B

Bus data of example 2

Bus No. Pg Qg Pp Qp |VSP| s
(pw) | (pw) | (PW | (PW | (pu)

1 - - - - 1.02 | O°

2 - - 0.60 | 0.30 - -

3 1.0 - - - 1.04 | -

4 - - 0.40 | 0.10 - -

5 - - 0.60 | 0.20 - -

Solution: In this example, we have,

e Bus 1 is slack bus, Bus 2, 4, 5 are PQ buses, and Bus 3 is PV bus

e The lines do not have half line charging admittances

P> +jQ2=Pg2 + jQs2— (Pp2 + jQp2) =— 0.6 —j0.3
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Pz + jQ3 = Pg3 + jQg3 — (Pp3 + jQp3) = 1.0 + jQqg3
Similarly Py + jQs=— 0.4 —j0.1, Ps +jQs =—0.6-j0.2

The Yy formed by the rule of inspection is given by:

2.15685 | -0.58823 | 0.0+j0.0 | -0.39215 | -1.17647
-i8.62744 | +j2.35294 +]1.56862 | +j4.70588
-0.58823 | 235293 | -1.17647 | -0.58823 | 0.0+j0.0
+§2.35294 | -j9.41176 | +j4.70588 | +j2.35294
v _| 0040.0 | -1.17647 | 235294 | 0.0+j0.0 | -1.17647
b= +4.70588 | -j9.41176 +4.70588
-0.39215 | -0.58823 | 0.0+j0.0 | 0.98038 | 0.0+j0.0
+1.56862 | +j2.35294 -i3.92156
-1.17647 | 0.0+j0.0 | -1.17647 | 0.0+j0.0 | 2.35294
+4.70588 +j4.70588 -j9.41176

The voltages at all PQ buses are assumed to be equal to 1+j0.0 pu. The slack bus

voltage is taken to be V,° = 1.02+j0.0 in all iterations.

1 {Pz — jQz
Yzz Vzo

Vzl = = Yzl Vlo = Y23 V30 - Y24 V4O _YZS VSO]

= 1| 206+ 703 4 58803+ j2.35294)% 1.0220°)
Y, | 1.0— j0.0

—{-1.17647 + j4.70588)x 1.0420° } - {(~ 0.58823 + j2.35294) x 1.0.£0° ]
= 0.98140 £ -3.0665° = 0.97999 — j0.0525
Bus 3 is a PV bus. Hence, we must first calculate Qs. This can be done as under:
Qs= [Vi| V| (G,,siné,, — B, cos 8, ) + |Vi| [V, | (G, sin Sy, — By, cosdy,)
2 - -
+|V,|" (Gs,8in 8,5 — By c088,,) + V5| [V, | (Gyy sin &y, — By, c0s6,,)
+ |V3| |V5| (Gss sin 8,5 — Bi; C05535)

We note that §; = 0°% 8, =-3.0665°% 063=0% &8,=0° and &5=0°
2031 =0833 =084 =0835=0" Bk =08;—k); B3 =3.0665°
Qs = 1.04 [1.02 (0.0+j0.0) + 0.9814 {—1.17647 x sin(3.0665°) — 4.70588

xC08(3.0665°%) }+1.04{-9.41176 xcos(0°)}+1.0 {0.0 + j0.0}+1.0{—4.70588xc0s(0%)}]
= 1.04 [-4.6735 + 9.78823 — 4.70588] = 0.425204 pu.

V3' :L[M—YM on = /8 V2' =

A VY Y.y
Y33 V;, 4 35 5:|
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_ 1 [1 0= jO425208 _ § 1 7647 + j4.70588)x (0.98140/ —3.0665°))

T Y, | 1.04-j0.0
—{1.17647 + j470588)x (1.20°)]]
= 1.05569 £3.077°= 1.0541 + j0.05666 pu.

Since it is a PV bus, the voltage magnitude is adjusted to specified value and V, is

computed as:  V, =1.04 £3.077°pu

1 [P —-jO s
V4l :Y—[% Y, VWY, Vzl —Y,; Vz.l —¥ys V50:|
44 4

= L |04+ 01§ 030215+ j1.56862)x 102207}
Y, | 1.0- j0.0

—{(~0.58823 + j2.35294)x(0.98140.£ —3.0665°)}]

_ 045293 38366 _ ) 555715 73030 pu= 0.94796- j0.12149

0.98038 — j3.92156

p_
vs' = 1 {—5 O{QS -Y, V' -Y,, v; Xy V3' =¥ v;]
YSS VS

o 3 {M—{(—1.17647+ j4.70588)x 1.02.£0°}

T Y| 1.0- 0.0

—{1.17647 + ja70588)x 1.04.23.077°}]
= 0.994618 £ —1.56° = 0.994249 — j0.027

Thus at end of 1% iteration, we have,

V,=1.022£0%pu V,=0.98140 £-3.066° pu
Vi =1.0423.077° pu V4=0.955715£-7.303° pu
and Vs=0.994618 2 —1.56° pu
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Example-3:

Obtain the load flow solution at the end of first iteration of the system with data as given below. The
solution is to be obtained for the following cases

(1) All buses except bus 1 are PQ Buses
(i) Bus 2 is a PV bus whose voltage magnitude is specified as 1.04 pu

(ii)) Bus 2 is PV bus, with voltage magnitude specified as 1.04 and 0.25 < Q2 < 1.0 pu.

Ol &

- R E—

(&

Fig. System for Example 3

Table: Line data of example 3

R X
SBEB | pw | ouw
1 2 0.05 0.15
1 3 0.10 0.30
2 3 .15 0.45
2 4 0.10 0.30
3 4 .05 0.15

Table: Bus data of example 3

P Qi Vi
BusNo- | owy | ow
1 — — 1.04 ~ 0"
2 0.5 ~0.2 —
3 — 1.0 0.5 —
4 —03 | —0.1 —

Solution: Note that the data is directly in terms of injected powers at the buses. The

bus admittance matrix is formed by inspection as under:

3.0-79.0 [ —2.0+i6.0 | —1.0+j3.0 0

2.0+j6.0 | 3.666—j11.0 |- 0.666 +j2.0 | — 1.0 + 3.0

—1.0 + 3.0 | —0.666 + 2.0 | 3.666—j11.0 | =2.0 + j6.0
0 —1.0+j3.0 | —2.0+i6.0 | 3.0-j9.0

7
Ygus =
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Case(i): All buses except bus 1 are PQ Buses

Assume all initial voltages to be 1.0 £ 0° pu.

L | B =005 0 0
V, = |: ==y Vi =l Ve =10
Yy v,

{20+ j6.0)x(1.0420°)}

_ 1 ]05+ ;0.2
Y, |1.0-j0.0

—{0.666 + j2.0)x (1.0£0° )} - {=1.0 + j3.0)x(1.020°)]
= 1.02014 £ 2.605°

1 | B~ jO 5
V3I:Y I: 3V°* 3_Y3lVl _Y32V21_1’34V40:|
33 3

1 [-1.0-jo5 |
= S22 _ {10+ j3.0)x (1.04£0.0°
)'33[1.0—1‘0.0 { j3.0)x ( )}

—{~0.666 + j2.0)x (1.02014.22.605°)}— {~ 2.0 + j6.0)x (1.0.20° )]
= 1.03108 £ 4.831°

1 | £ —JjO o
V;:Y |: 4V°* 4_Y4lvl —Y42V2|_Y43V3l:|
44 4

1 o3+ o1 g . .
=5 [I.O—j0.0 {=1.0 + j3.0)x(1.02014.22.605° )}
—{=2.0+ j6.0)x(1.031082-4.831°)}]

=1.02467 £ -0.51°

Hence
V! =1.04 £0°pu V) = 1.02014 £2.605° pu

Vv, =1.03108 ~£-4.831° pu V) =1.02467 £-0.51° pu
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Case(ii): Bus 2 is a PV bus whose voltage magnitude is specified as 1.04 pu
We first compute Q.

Q2= |V, [|V,| (G, 8in &, — B,,c0s6,,) +|V,| (G,,sind,, — B,,c0s8,,)

+ |V3| (G,ysinS,; — B,y cos Sy, ) + |V4| (G,,sin &,, — B,, cos 524)]

1.04 [1.04 {—6.0} + 1.04 {11.0}+1.0{— 2.0} + 1.0 {-3.0}= 0.208 pu.

1 [0.5 — j0.208

= |5 {=2.0+ j6.0)x(1.04a20°)}
22 )

—{o0.666 + j2.0)x (1.0£0° }— {~1.0 + j3.0)x(1.020°)}]
1.051288 + j0.033883

The voltage magnitude is adjusted to 1.04. Hence V.= 1.04 ~ 1.846°

1 [-1.0- jo.5 ,
V) = 1.0+ j3.0)x (1.0420.0°
: YH[ 1.0 £0° {10+ j3.0)x ¢ o}
(- 0.666 + 72.0)x (1.04£1.846°) } — {{- 2.0 + 76.0) < (1.0£0°)]]
= 1.035587 2 — 4.951° pu.
1 [03+ jo.1 , _
V! = 1.0+ 3.0)x(1.0421.846°
Lo | {10+ o) )

{(- 2.0+ j6.0)%(1.035587 2 — 4.951°)}]
= 0.9985 ~— 0.178°

Hence at end of 1* iteration we have:
V' =1.04 2£0°pu v, = 1.04 £ 1.846" pu

V! =1.035587 ~-4.951° pu V! =0.9985 ~2-0.178° pu

Case (iii):Bus 2 is PV bus, with voltage magnitude specified as 1.04 & 0.25=Q,<1 pu.

If 0.25 < Q, < 1.0 pu then the computed value of Q, = 0.208 is less than the lower

limit. Hence, Q; is set equal to 0.25 pu. Iterations are carried out with this value of Q.

The voltage magnitude at bus 2 can no longer be maintained at 1.04. Hence, there is

no necessity to adjust for the voltage magnitude. Proceeding as before we obtain at

the end of first iteration,

V! =1.04 £0%pu V) =1.05645 £ 1.849° pu

V) =1.038546 ~-4.933° pu V. =1.081446 £ 4.896° pu

Department of EEE, SJBIT
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2.7. Limitations of GS Load Flow Analysis

GS method is very useful for very small systems. It is easily adoptable, it can be generalized and it is
very efficient for systems having less number of buses. However, GS LFA fails to converge in systems with

one or more of the features as under:

e Systems having large number of radial lines
e Systems with short and long lines terminating on the same bus
e Systems having negative values of transfer admittances

e Systems with heavily loaded lines, etc.

GS method successfully converges in the absence of the above problems. However, convergence also
depends on various other set of factors such as: selection of slack bus, initial solution, acceleration factor,

tolerance limit, level of accuracy of results needed, type and quality of computer/ software used, etc.
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_oad Flow Studies (Continued)
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3.1. Newton-Raphson Method

Although the Gauss-Seidel was the first popular method for load flow calculations, the
Newton-Raphson method is now commonly used. The Newton-Raphson (NR) method has
better convergence characteristics and for many systems is faster than the Gauss-Seidel
method; the former has a much larger time per iteration but requires very few iterations (four
is general), whereas the Gauss-Siedel requires up to 30 iterations, the number increasing with
the size of system.

NR method is used to solve a system of non-linear algebraic equations of the form

f(x)=0. Consider a set of n non-linear algebraic equations given by

FlX Xz, =R i=12....75n (25)
Letx’,x,°.......x,”, be the initial guess of unknown variables and
Ax,° Ax,°......Ax,° be the respective corrections. Therefore,

£ (x,0 + Arlo,xzo + szo ........ x"o + Axno) =0 =12 .00m (26)

The above equation can be expanded using Taylor’s series to give

T s ™ +M%] Arlo 3 [%)szo I (%]Arno}
axl axz axn

+ Higher order terms = 0 M =120 (27)
[} 0 0
Where, L2//3 ; 4 ., NEsToinee % are the partial derivatives of f; with respect
X, ox, ox,
to Xx,,X,......x, respectively, evaluated at (x,’,x,"..........x,"). If the higher order terms

are neglected, then (27) can be written in matrix form as

_flo— ax,_ 1 ox, ) ax,,_ : —Axlo—
e @ @
ox, ax;, ox,
. \ : =0 (28)
| L ox, ox, dox, ) |
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In vector form (28) can be written as

4 J0KX" =0

Or F®=—J°AXx"
Or A = JI° T F° (29)
And X=X AR 30)

Here, the matrix [J] is called the Jacobian matrix. The vector of unknown
variables is updated using (30). The process is continued till the difference between

two successive iterations is less than the tolerance value.

NR method for load flow solution in polar coordinates

In application of the NR method, we have to first bring the equations to be solved, to

the form f;(x,.x,,...x,) =0, where x,,x,,..x, are the unknown variables to be

determined. Let us assume that the power system has n, PV buses and n, PQ buses.
In polar coordinates the unknown variables to be determined are:
(i) S, , the angle of the complex bus voltage at bus i, at all the PV and PQ buses. This

gives us n, +n, unknown variables to be determined.

in|v;

, the voltage magnitude of bus i, at all the PQ buses. This gives us n, unknown
variables to be determined.
Therefore, the total number of unknown variables to be computed is: n, +2n,, for

which we need n, +2n, consistent equations to be solved. The equations are given

by,

AR, =Py~ Fea =0 1)
AQ: =0y~ Cicar =0 (32)
Where P, ,, = Specified active power at bus i

Q= Specified reactive power at bus i

P

ical

= Calculated value of active power using voltage estimates.

Q; .« = Calculated value of reactive power using voltage estimates

AP = Active power residue

AQ = Reactive power residue
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The real power is specified at all the PV and PQ buses. Hence (31) is to be solved at
all PV and PQ buses leading to n, +n, equations. Similarly the reactive power is

specified at all the PQ buses. Hence, (32) is to be solved at all PQ buses leading to 7,

equations.

We thus have n, +2n, equations to be solved for n, +2n, unknowns. (31) and (32

are of the form F(x) = 0. Thus NR method can be applied to solve them. Equation:
(31) and (32) can be written in the form of (30) as:

AP I Iy A
= (33)
ao| |75 J. AV
Where J,,J,,J,,J, are the negated partial derivatives of AP and AQ with respec

to corresponding ¢ and |V| The negated partial derivative of AP, is same as the partia

derivative of Pca, since Psp is a constant. The various computations involved ar

discussed in detail next.

Computation of P, and Q..

The real and reactive powers can be computed from the load flow equations as:

v,

Pea=F = Z Vi |(sz cosd; + By sin )
k=1

=G,lv)|” + i V.|V, (G cos 5, + B sin&,) (34)
kei
Qica =Qi = Z Vilvl: |(Gik sind, — B, cos (Sik)
k=1
=-B,|[V,|" + Z V.|V, (G, sin S, — B, cos S,) (35)
k=1

k=i
The powers are computed at any (r + 1) iteration by using the voltages available fron

previous iteration. The elements of the Jacobian are found using the above equation:

as:

Elements of J;

n V’I

V, |{G,.k (—sindS, )+ B, cosS, }
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: |{G,.k (= sin O, )+ B, cosd, }

L#x
= _Qi _Biilvi X
oP,

(i —

%, V,|(G, (sin 8, )(=1) + B, (cos 8, ) (1))

Elements of J3

3§i - Z i I(|(Gi‘1' COS 8y + By sindy ): i
=

ggi - I(|(G:I CDSé‘ﬁ + Bﬂr sin 5;;()
k

Elements of J,

aaij Vil= Ir|(G;1— COs 8y + By 5mé;ik):ﬂ+vf26
i k=i

aa|P| |(G cosd, + B, sind, )

Elements of J;

oP,
1\%

i

2

Vk|(GH: sin 8 — By c0s &, )= 0, —|V,

k=i

90,
EA

Thus, the linearized form of the equation could be considered agai:

RP ﬂﬁf']

|(G sind, — B, cosd, )
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The elements are summarized below:

dP, 2
YVH, =——=-0.—B_|V.
('l'} n aé‘i Ql n I
. oP, i
(i) H, :gzakﬁ —bye, =V,|[V, (G, sin S, — B, cosé,)
k
(iii) N, = oF, V|= P +G,V]|
da|V;
i JP, :
(iv) N, = W Vk| =ae, + b, f; = V,|V, |(G,.,? cosdy + B, sind, )
k
V) M, —%: P =G|V, :
dé

3.2. Decoupled Load Flow

In the NR method, the inverse of the Jacobian has to be computed at every iteration.

When solving large interconnected systems, alternative solution methods are possible,

taking into accounbt certain observations are made of practical systems. These are,

e Change in voltage magnitude |V,| at a bus primarily affects the flow of reactive
power Q in the lines and leaves the real power P unchanged. This observation

;|

of the sub-matrix [N], which contains terms that are partial derivatives of real

: oP, ; ;
is much larger than 8\ ! ’ . Hence, in the Jacobian, the elements
V.

J

implies that

power with respect to voltage magnitudes can be made zero.

e Change in voltage phase angle at a bus, primarily affects the real power flow P

over the lines and the flow of Q is relatively unchanged. This observation implies

oP, 20.
that —is much larger thana—g'. Hence, in the Jacobian the elements of the sub-
j i

matrix [M ], which contains terms that are partial derivatives of reactive power

with respect to voltage phase angles can be made zero.

Department of EEE, S]BIT
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These observations reduce the NRLF linearised form of equation to

A
AQ 0O L |V|

From (37) it is obvious that the voltage angle corrections Ad are obtained using real
power residues AP and the voltage magnitude corrections |AV| are obtained from
reactive power residuesAQ. This equation can be solved through two alternate
strategies as under:

Strategy-1

(i) Calculate AP") AQ") and 7

A" -
(ii)  Compute A|V (r)| =[70]" [AP ]
"/(r)

(iii) Update & and |V|.

(iv) Go to step (i) and iterate till convergence is reached.

Strategy-2
(i) Compute AP") and Sub-matrix H"). From (37) find AS") = [H ")T'AP(’)

(ii) Up date & using 8" = 5 4+ AS™).
(iii) Use 8" to calculate AQ") and 1"

) Alv(r) ; .
(iv) Compute W =[] a0®
(v)Update, [V V) :‘v(r) +|Av(r)

(vi) Go to step (i) and iterate till convergence is reached.

In the first strategy, the variables are solved simultaneously. In the second strategy the

iteration is conducted by first solving for AJS and using updated values of & to

calculate A|V|. Hence, the second strategy results in faster convergence, compared to

the first strategy.
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3.3. Fast Decoupled Load Flow

If the coefficient matrices are constant, the need to update the Jacobian at every
iteration is eliminated. This has resulted in development of fast decoupled load Flow
(FDLF). Here, certain assumptions are made based on the observations of practical

power systems as under:

e Bj; >>Gj (Since the % ratio of transmission lines is high in well designed
systems)

e The voltage angle difference (5,. -0 j) between two buses in the system is very
small. This means cos (5,. -0, )s land sin (5,. - 5j): 0.0

9 Qi<<BiiVi2

With these assumptions the elements of the Jacobian become

H; :Lik:_|vi |Vk By (iik)
H; =L; =-B;|V; ’
The matrix (37) reduces to
aP]= v,|v,|B; |as]
AV
[a0]= [vi|v; |8 HTI‘} (38)

”

Where B,.’j and B  are negative of the susceptances of respective elements of the

bus admittance matrix. In (38) if we divide LHS and RHS by V,.{ and assume ‘Vj‘ =1,

we get,

AP ;
s

_ﬂ :[B.’.’ {%] (39)
_IVI} 1M
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Equations (39) constitute the Fast Decoupled load flow equations. Further
simplification is possible by:

e Omitting effect of phase shifting transformers

e Setting off-nominal turns ratio of transformers to 1.0

e In forming Bj, omitting the effect of shunt reactors and capacitors which

mainly affect reactive power

e Ignoring series resistance of lines in forming the Ypus.

With these assumptions we obtain a loss-less network. In the FDLF method, the
matrices [B] and [B"] are constants and need to be inverted only once at the

beginning of the iterations.

3.4. Comparison of Load Flow Methods

The comparison of the methods should take into account the computing time required
for preparation of data in proper format and data processing, programming ease,
storage requirements, computation time per iteration, number of iterations, ease and
time required for modifying network data when operating conditions change, etc.
Since all the methods presented are in the bus frame of reference in admittance form,
the data preparation is same for all the methods and the bus admittance matrix can be
formed using a simple algorithm, by the rule of inspection. Due to simplicity of the
equations, Gauss-Seidel method is relatively easy to program. Programming of NR
method is more involved and becomes more complicated if the buses are randomly
numbered. It is easier to program, if the PV buses are ordered in sequence and PQ

buses are also ordered in sequence.

The storage requirements are more for the NR method, since the Jacobian elements
have to be stored. The memory is further increased for NR method using rectangular
coordinates. The storage requirement can be drastically reduced by using sparse
matrix techniques, since both the admittance matrix and the Jacobian are sparse
matrices. The time taken for a single iteration depends on the number of arithmetic

and logical operations required to be performed in a full iteration. The Gauss —Seidel
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method requires the fewest number of operations to complete iteration. In the NR
method, the computation of the Jacobian is necessary in every iteration. Further, the
inverse of the Jacobian also has to be computed. Hence, the time per iteration is larger
than in the GS method and is roughly about 7 times that of the GS method, in large

systems, as depicted graphically in figure below. Computation time can be reduced if

the Jacobian is updated once in two or three iterations. In FDLF method, the Jacobian
is constant and needs to be computed only once. In both NR and FDLF methods, the

time per iteration increases directly as the number of buses.

Time units

Gl
41 NR
2
- s
: | : -+
0 40 80 120 No. of buses

Figure 4. Time per Iteration in GS and NR methods

The number of iterations is determined by the convergence characteristic of the
method. The GS method exhibits a linear convergence characteristic as compared to
the NR method which has a quadratic convergence. Hence, the GS method requires
more number of iterations to get a converged solution as compared to the NR method.
In the GS method, the number of iterations increases directly as the size of the system
increases. In contrast, the number of iterations is relatively constant in NR and FDLF
methods. They require about 5-8 iterations for convergence in large systems. A
significant increase in rate of convergence can be obtained in the GS method if an
acceleration factor is used. All these variations are shown graphically in figure below.

The number of iterations also depends on the required accuracy of the solution.
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Generally, a voltage tolerance of 0.0001 pu is used to obtain acceptable accuracy and
the real power mismatch and reactive power mismatch can be taken as 0.001 pu. Due
to these reasons, the NR method is faster and more reliable for large systems. The
convergence of FDLF method is geometric and its speed is nearly 4-5 times that of
NR method.

Time units

60l
40| GS
20
_N®
| | |
0 40 80 120 No. ofhllsm

Figure 5. Total time of Iteration in

GS and NR methods

No. of iterations

T

1200

| I I

. ! . >
0 1.2 1.4 1.6 Acc. Factor

Figure 6. Influence of acceleration factor

on load flow methods
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In this chapter, the load flow problem, also called as the power flow problem, has been
considered in detail. The load flow solution gives the complex voltages at all the buses and
the complex power flows in the lines. Though, algorithms are available using the
impedance form of the equations, the sparsity of the bus admittance matrix and the ease of
building the bus admittance matrix, have made algorithms using the admittance form of
equations more popular. The most popular methods are the Gauss-Seidel method, the
Newton-Raphson method and the Fast Decoupled Load Flow method. These methods have
been discussed in detail with illustrative examples. In smaller systems, the ease of
programming and the memory requirements, make GS method attractive. However, the
computation time increases with increase in the size of the system. Hence, in large systems
NR and FDLF methods are more popular. There is a trade-off between various
requirements like speed, storage, reliability, computation time, convergence characteristics
etc. No single method has all the desirable features. However, NR method is most popular

because of its versatility, reliability and accuracy.
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4.1. Introduction

One of the earliest applications of on-line centralized control was to provide a central facility, to
operate economically, several generating plants supplying the loads of the system. Modern integrated
systems have different types of generating plants, such as coal fired thermal plants, hydel plants, nuclear
plants, oil and natural gas units etc. The capital investment, operation and maintenance costs are different

for different types of plants. The operation economics can again be subdivided into two parts.

i) Problem of economic dispatch, which deals with determining the power output of each plant to meet
the specified load, such that the overall fuel cost is minimized.

i) Problem of optimal power flow, which deals with minimum — loss delivery, where in the power flow,
is optimized to minimize losses in the system. In this chapter we consider the problem of economic

dispatch.

During operation of the plant, a generator may be in one of the following states:

1. Base supply without regulation: the output is a constant.

2. Base supply with regulation: output power is regulated based on system load.

3. Automatic non-economic regulation: output level changes around a base setting as area control error
changes.

4. Automatic economic regulation: output level is adjusted, with the area load and area control error,

while tracking an economic setting.

Regardless of the units operating state, it has a contribution to the economic operation, even though
its output is changed for different reasons. The factors influencing the cost of generation are the generator
efficiency, fuel cost and transmission losses. The most efficient generator may not give minimum cost,
since it may be located in a place where fuel cost is high. Further, if the plant is located far from the load
centers, transmission losses may be high and running the plant may become uneconomical. The economic

dispatch problem basically determines the generation of different plants to minimize total operating cost.

Modern generating plants like nuclear plants, geo-thermal plants etc, may require capital investment
of millions of rupees. The economic dispatch is however determined in terms of fuel cost per unit power
generated and does not include capital investment, maintenance, depreciation, start-up and shut down costs

etc.
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4.2. Performance Curves

i) lnput-Output Curve

This is the fundamental curve for a thermal plant and is a plot of the input in British thermal units

(Btu) perhour versus the power output of the plant in MW as shown in Figl.

A

Btu / hr (Input)

— (output) MW
Fig 1: Input — output curve

i) Heat Rate Curve

The heat rate is the ratio of fuel input in Btu to energy output in KWh. It is the slope of the input —
output curve at any point. The reciprocal of heat — rate is called fuel —efficiency. The heat rate curve is a

plot of heat rate versus output in MW. A typical plot is shown in Fig .2

A

(Heat rate) Btu/ kw-hr

(output) MW

Fig 2: Heat rate curve.
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iii) Incremental Fuel Rate Curve

The incremental fuel rate is equal to a small change in input divided by the corresponding change

in output.

Alnput
AQutput

Incremental fuel rate =

A

Incremental fuel rate

(output) MW

Fig 3: Incremental fuel rate curve

The unit is again Btu / KWh. A plot of incremental fuel rate versus the output is shown in Fig 3

iv) Incremental cost curve

The incremental cost is the product of incremental fuel rate and fuel cost (Rs / Btu or $ / Btu). The
curve in shown in Fig. 4. The unit of the incremental fuel cost is Rs / MWh or $ /MWh.

A

I approximate linear cost
= actual cost

=

=

P

o

>

(output) MW ——

Fig 4: Incremental cost curve

In general, the fuel cost F; for a plant, is approximated as a quadratic function of the generated output Pg;.

F'l =4 + bi PGi + G PGig Rs/h

Department of EEE, SJBIT 4
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The incremental fuel cost is given by

dF.
— = bi + 2¢; Pai Rs/ MWh

dF,;

The incremental fuel cost is a measure of how costly it will be produce an increment of power. The
incremental production cost, is made up of incremental fuel cost plus the incremental cost of labour, water,
maintenance etc. which can be taken to be some percentage of the incremental fuel cost, instead of
resorting to a rigorous mathematical model. The cost curve can be approximated by a linear curve. While
there is negligible operating cost for a hydel plant, there is a limitation on the power output possible. In
any plant, all units normally operate between Pgmin, the minimum loading limit, below which it is

technically infeasible to operate a unit and Pgmax, Which is the maximum output limit.

4.3. Economic Generation Scheduling Neglecting Losses And Generator Limits

The simplest case of economic dispatch is the case when transmission losses are neglected. The
model does not consider the system configuration or line impedances. Since losses are neglected, the total
generation is equal to the total demand Pp. Consider a system with ny number of generating plants
supplying the total demand Pp. If Fi is the cost of plant i in Rs/h, the mathematical formulation of the
problem of economic scheduling can be stated as follows:

ne

Minimize Fr= ) F,
i=1
"g
Such that ¥ PP
i=1
where Fr = total cost.

Pgi = generation of plant i.
Pp = total demand.

This is a constrained optimization problem, which can be solved by Lagrange’s method.

Lagrange Method for Solution of Economic Schedule

The problem is restated below:

Department of EEE, SJBIT
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Minimize Fr = Z F;
i=1
Ilg

Such that P, = Z P =
i=1

The augmented cost function is given by

The minimum is obtained when
of of£
=0 and — =
(=) oA
of N oF, a5
aPGi al)Gi
a£ "g

— =P, — oo t—
aﬂ D ; Gi

0

ZPGI'J
i=1

0

0

The second equation is simply the original constraint of the problem. The cost of a plant

Fi depends only on its own output Pg;, hence

dF; _ oF, _ dF,
oP, JdP; dP;
Using the above,
OF,  dF, .
= =A; i=l..... Ng
dFg  dPg
We can write
bi"f“ijPGj:?L i=1....... Ng

The above equation is called the co-ordination equation. Simply stated, for economic generation

scheduling to meet a particular load demand, when transmission losses are neglected and generation limits

are not imposed, all plants must operate at equal incremental production costs, subject to the constraint that

the total generation be equal to the demand. From we have

Department of EEE, SJBIT
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We know in a loss less system

ng

ZPGi:PD

i=l

Substituting (8.16) we get

% A—b

i=P
Z2cl. v

=1

An analytical solution of A is obtained from (8.17) as

llg b.

P 1

Tos ’ Z' 28,
ng 1
Z 2c

It can be seen that | is dependent on the demand and the coefficients of the cost function.
Example 1.

The fuel costs of two units are given by

Fi=1.5+20Pgi +0.1 Pg° Rs/h

F=1.9+30Pg, + 0.1 Ps,” Rs/h

Pgi1, Py are in MW. Find the optimal schedule neglecting losses, when the demand is

200 MW.

Solution:

dF,
L -20+02P, Rs/MWh

Gl

dF,

=30+02P,, Rs/MWh

G2
P, = P, + P;, = 200 MW

For economic schedule

dF, _ dF, _
dPy; dPs
20+ 0.2 Pg; =30+ 0.2 (200 - Pg))
Solving we get, PG = 125 MW
Pg, =75 MW

Department of EEE, SJBIT 7



| Power System Analysis-2 (18EE71)

2021-22

A=20+0.2 (125)=45Rs/MWh
Example 2
The fuel cost in $ / h for two 800 MW plants is given by
F) =400 + 6.0 Pg; + 0.004 P,
Fz = 500 + by Pgs + 3 Pgy”

where Pg;, Pg; are in MW

(a) The incremental cost of power, A is $8 / MWh when total demand is 550MW.

Determine optimal generation schedule neglecting losses.

(b) The incremental cost of power is $10/MWh when total demand is 1300 MW.

Determine optimal schedule neglecting losses.

(c) From (a) and (b) find the coefficients b, and c,.

Solution:
A-b, _ 8.0-6.0
2¢, 2x0.004

a) P, = =250 MW

P,, =P, — P,; =550—250 =300 MW

_A-b, _ 10-6

b)  B,= = =500 MW
2C,  2x0.004

P,, = P, — P, =1300— 500 = 800 MW

C P, = 2
) L 2¢;
8.0-b
From (a) 300 = 2
2¢;
From (b) 800 = -100——172
2c,
Solving we get by=6.8
¢, =0.002
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Economic Schedule Including Limits on Generator (Nealecting L osses

The power output of any generator has a maximum value dependent on the rating of the generator. It
also has a minimum limit set by stable boiler operation. The economic dispatch problem now is to

schedule generation to minimize cost, subject to the equality constraint.
”g
Z Py =P
i=1

and the inequality constraint

Pgi (min) <Psi< Pgi (max) » R ey Ng

The procedure followed is same as before i.e. the plants are operated with equal incremental fuel costs, till
their limits are not violated. As soon as a plant reaches the limit (maximum or minimum) its output is fixed

at that point and is maintained a constant. The other plants are operated at equal incremental costs.

Example 3: Incremental fuel costs in $ / MWh for two units are given below:

iF
1 = 0.01P, +2.0 $/MWh
dP,,

IF

T2 _0.012P,, +1.6$/ MWh
Az )

The limits on the plants are Py, = 20 MW, P = 125 MW. Obtain the optimal schedule
if the load varies from 50 — 250 MW.

Solution:
The incremental fuel costs of the two plants are evaluated at their lower limits and upper

limits of generation.
At PG (miny = 20 MW.

dF,
= —1 =0.01x 2042.0 = 2.2$/ MWh

I(min)
dr

AFy 0012x20+ 1.6 = 1.84 $/ MWh

2 2 —
Sl e
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At PG (Max) =125 Mw
Xl(max) =001 x 1254+2.0=3.25 $/ MWh

Aomaxy =0.012x 125+ 1.6 =3.1 $/ MWh
Now at light loads unit 1 has a higher incremental cost and hence will operate at its lower limit of 20 MW.

Initially, additional load is taken up by unit 2, till such time its incremental fuel cost becomes equal to 2.2$ /
MWh at PG2 = 50 MW. Beyond this, the two units are operated with equal incremental fuel costs. The
contribution of each unit to meet the demand is obtained by assuming different values of I; When | =3.1 $/
MWh, unit 2 operates at its upper limit. Further loads are taken up by unit 1. The computations are show in
Table below.

Table Plant output and output of the two units

JdF, dF, Plant A Pai Paz Plant Qutput

dfg dP,, MW

sMwh | gmwn | FMWR MW MW
2.2 1.96 1.96 20* 30 50
2.2 2.2 2.2 20t 50 70
2.4 2.4 24 40 606.7 106.7
2.6 2.6 2.6 60 83.3 143.3
2.8 2.8 2.8 80 100 180
3.0 3.0 3.0 100 116.7 216.7
3.1 3.1 31 110 125% 235

For a particular value of I, Pg; and Pg; are calculated. Fig below Shows plot of each unit output versus the
total plant output. For any particular load, the schedule for each unit for economic dispatch can be obtained.

140 T T T

120

100

&0

40

1 1
50 100 150 200 250
output MW
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Example 4.

In example 3, what is the saving in fuel cost for the economic schedule compared to the case where the
load is shared equally. The load is 180 MW.

Solution:

From Table it is seen that for a load of 180 MW, the economic schedule is PG1 = 80 MW and PG2 = 100
MW. When load is shared equally PG1 = PG2 = 90 MW. Hence, the generation of unit 1 increases from 80
MW to 90 MW and that of unit 2 decreases from 100 MW to 90 MW, when the load is shared equally.
There is an increase in cost of unit 1 since PG1 increases and decrease in cost of unit 2 since PG2

decreases.
Increase in cost of unit 1 = J. dpP, Gl
80 dp Gl
90
= [(0.01P,, +2.0)dP,, =28.5$/h
80
Decrease in cost of unit 2 = J. P dPp, G2
100 G2

90
[(0.012P,, +1.6)aP;, =—27.4$ /h

100

Total increase in cost if load is shared equally =28.5-27.4=1.1$%/h

Hence the saving in fuel cost is 1.1 $/ h if coordinated economic schedule is used.

4.5. Economic Dispatch Including Transmission Losses

When transmission distances are large, the transmission losses are a significant part of the generation
and have to be considered in the generation schedule for economic operation. The mathematical

formulation is now stated as

Minimize F, =) F,
i=1
g
Such That > PPy P,

where Py is the total loss.
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The Lagrange function is now written as

g
£= FT—Z(ZPG,.—PD—PLJ:O

i=1

The minimum point is obtained when

aPGi aPGi aPGi

8£:

s
Y D Ps—P,+P, =0  (Same as the constraint)
i=1

Il
p—

oF. dF’
Since e =

i

oP.. dP,

, (8.27) can be written as

dF, 1 0P, _
dPg; dPg;

A

_dE| 1

dP. | 1-0P,
P Gi

The term Tis called the penalty factor of plant #, L;. The coordination
L

1—
aPGi

equations including losses are given by

_4F ;|

A G L ng
dPg;

The minimum operation cost is obtained when the product of the incremental fuel cost and the penalty

factor of all units is the same, when losses are considered. A rigorous general expression for the loss PL is
given by

PL = E'm Z'n PGm an P.li}n + Z'n PGn Bno + Boo

where Bmn, Bno , Boo called loss — coefficients , depend on the load composition. The assumption here
is that the load varies linearly between maximum and minimum values. A simpler expression is

PLZ }:m En PGm an pGn
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The expression assumes that all load currents vary together as a constant complex fraction of the total load
current. Experiences with large systems have shown that the loss of accuracy is not significant if this
approximation is used. An average set of loss coefficients may be used over the complete daily cycle in the
coordination of incremental production costs and incremental transmission losses. In general, Bmn = Bnm

and can be expanded for a two plant system as
PL =B Pg1 + 2 B12 Pgi P2 + B PGZE

Example 5
A generator is supplying a load. An incremental change in load of 4 MW requires generation to be
increased by 6 MW. The incremental cost at the plant bus is Rs 30 /MWh. What is the incremental cost at

the receiving end?

Solution:

dF, _ 30
dP,

dF,
dP

Gl

@ % AP = 2MW | sepemm

APg = 6MW APp = 4MW

=30

Fig ; One line diagram of example 5

APL = APg - APp =2MW

A atreceiving end is given by

Wy o B O 5 B R
dP; AP, 4
orﬁ:dF'x 1 =30x l =45 Rs/MWh
dPGl l_APL I—Z
AP, 6
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Example 6

In a system with two plants, the incremental fuel costs are given by

dF,

L = 0.01P,, +20 Rs/ MWh

Gl
dF.

2 =0.015P,, +22.5 Rs/ MWh
PG2

The system is running under optimal schedule with Pg; = Pg, = 100 MW.

oF, oP,
If L= 0.2, find the plant penalty factors and —=-.

aPG2 Gl
Solution:

For economic schedule,

dF,
LL, =A4; P N
dPy; 98
al:)Gi

For plant 2, Pg>= 100 MW

-~ (0.015x100 +22.5) L =
1-0.2
Solving, A =30Rs/ MWh
1
L= =105
1-0.2
2 L, = A= (0.01x100+20) L, = 30
dPg,
L,=1.428
1
Ly= ———
o 0P,
P,
1 oP,
1.428 = ——— ; Solving L =0.3
e IR - aPGI
o)
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Example 7

A two bus system is shown in Fig. 8.8 If 100 MW is transmitted from plant 1 to the load,
a loss of 10 MW is incurred. System incremental cost is Rs 30 / MWh. Find Pg;, Pg> and
power received by load if

dr
dEBz;

=0.02P,, +16.0 Rs / MWh

dF,

= 0.04P,, + 20.0 Rs/ MWh

G2

©

T P, < P,
|

Load
Fig One line diagram of example 7

Solution:

Since the load is connected at bus 2 , no loss is incurred when plant two supplies the
load.

Therefore in (8.36) B, = 0 and By, = 0

JP oP,
PL:BIIPGI2; > =2B,,Fs; -

dP;, dPz

=0.0

From data we have P = 10 MW, if Pg; = 100 MW
10 = By (100)?

B;;=0.001 MW’

Coordination equation with loss is

dF, P,

“+A =4
dFs; P,
For plant 1 dr; +A O A
dP;; dPg,

(0.02 Py +16.0) +30 (2 x 0.001 x Pg;) =30

0.08 Pg; = 30 - 16.0. From which, Pg; = 175 MW
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dF. JP,
2O M

Gl aPG?.

For Plant 2 =A

0.04 Pg, + 20.0 = 30 or Pg, = 250 MW
Loss = By; Pgi2= 0.001 x (175)% = 30.625 MW

Pp = (Pgi1 + Pg2) — PL=394. 375 MW

4.6. Derivation of Transmission Loss Formula

An accurate method of obtaining general loss coefficients has been presented by Kron. The method is

elaborate and a simpler approach is possible by making the following assumptions:

() All load currents have same phase angle with respect to a common reference
(ii) The ratio X / R is the same for all the network branches.
Consider the simple case of two generating plants connected to an arbitrary number of loads through a

transmission network as shown in Fig below.

Y

I
o

Ia2
O=

(a)

Imm=1Ip

@:

(b}

g
0

g
Y

©)

Fig Two plants connected to a number of loads through a transmission network

Department of EEE, SJBIT 16



| Power System Analysis-2 (18EE71) 2021-22

Let’s assume that the total load is supplied by only generator 1 as shown in Fig 8.9b. Let

the current through a branch K in the network be Ix;. We define

I
Ny, Z
I,

It is to be noted that Ig; = Ip in this case. Similarly with only plant 2 supplying the load

current Ip, as shown in Fig 8.9c, we define

Ny, :Ilﬂ
D

Nk1 and Nk» are called current distribution factors and their values depend on the
impedances of the lines and the network connection. They are independent of Ip. When
both generators are supplying the load, then by principle of superposition

Ik = Nki1 Ig1 + Nk2 g2

where Ig;, Ig2 are the currents supplied by plants 1 and 2 respectively, to meet the
demand Ip. Because of the assumptions made, Ik and Ip have same phase angle, as do

Ix» and Ip. Therefore, the current distribution factors are real rather than complex. Let
L= by | and B, S| L075,
where o, and o, are phase angles of Ig; and I, with respect to a common reference. We

can write
1 ” = (N | 61|08 0, + Ny I, | €050, ) + (N 1| Iy |sin &, + N g, |Ig,|sin G, )

217 12[ne2 .2 ] 2 2[ 2 = ]
Ny'|g| [cos? o, +sin?s, |+ N, [, [cos® o, +sin” o,

- +2[N,“|IG,|0050'1NK2|IG2|cosa2 +NK,|IGl|sin0',NK2|162|sin0'2]
=NKI2|IGI|2 +NK22|IG2|2 +2NKINK2|IG]||IG2|COS o, _0'2)

Now |IG,|:

Gl
\/§|V,|cos¢, nd|fes| = \/_‘V |cos¢)2

where Pg;, Pgy are three phase real power outputs of plantl and plant 2; V,, V, are the

line to line bus voltages of the plants and ¢,, ¢, are the power factor angles.

The total transmission loss in the system is given by

Pr= > 31 |'R,
K
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where the summation is taken over all branches of the network and Rk is the branch

resistance. Substituting we get

2latfe ,cos(c, —,)
NN R
|V ||V2|cos¢l cos @, ; kitVk2

ZK]

LT

|V | cos ¢', Yz

ZNKZ R,

|V2| cos ¢2

PL = PGIZBII +2PGIPG2BIZ +PGZZBZ2

1

where Bis—— Y N:°R
Y eosg ) ® T T
cos(O' 0') ZN N R,
2N V,|[V,|cos ¢, cos g, & g o
|
By, = —ZNK22RK

2
V,| (cosg, )*
The loss — coefficients are called the B — coefficients and have unit MW ™.

For a general system with n plants the transmission loss is expressed as

P 2
Nipi™ ot ____SIN2R
; Kl V, z(cosgz),,)z; SOl

ZNKP

})Gl2
Vi[*(cosg, )’

5 i FepPs, cos(O' )
P! ’V ”V ‘cosqﬁ cosg, k

L:

In a compact form

PL = ZZPGPBPqPGq

p=1 g=1

cos(a -0 )

Bra ‘V HV ‘cosgbp cosg, Z Neel R

B — Coefficients can be treated as constants over the load cycle by computing them at

average operating conditions, without significant loss of accuracy.
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Example 8
Calculate the loss coefficients in pu and MW™ on a base of S0OMVA for the network of

Fig below. Corresponding data is given below.

I,=12-j0.4pu Z,=0.02 +j 0.08 pu
I,=0.4-j0.2 pu Z,=0.08 +j 0.32 pu
I.=0.8-j0.1 pu Z.=0.02 +j 0.08 pu
Iq=0.8-j0.2 pu Zq=0.03 +j 0.12 pu
I.=1.2-j0.3 pu Z.=0.03 +j0.12 pu
Veer= 1.0 £0°
1 2
Otz 5H0
= = < |
i Ia Ib Ic <
I] 12

d | L e |dL
TLoad 1 TLoad 2

Fig : Example 8

Solution:
Total load current

IL=I4+1.=20-j0.5=2.061 £-14.03°A
I, =14=08-j0.2=0.8246 ~-14.03° A

I I

U_04; 12-10-04=06

IL L

If generator 1, supplies the load then I, = I.. The current distribution is shown in Fig a.

B T R BN
L=0

I

d |doan e | o061

TLoad 1 TLoad 2

Fig a : Generator 1 supplying the total load
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I I
N,=-2=10; N, =

—a b
al
IL IL

=0.6; N, =0; N, =0.4; N, =0.6.

Similarly the current distribution when only generator 2 supplies the load is shown in Fig
b.

Ot 5O
| L=0 = |

041 I

d |{o4ar e [{o61

TLoad | TLoad 2

Fig b: Generator 2 supplying the total load

N2 =0; Ny = -0.4; Neg = 1.0; Nz = 0.4; Nep = 0.6
From Fig 8.10, V| = Vs +Z.1,
=1£0°+(1.2-j0.4) (0.02 +j0.08)
=1.06 £ 4.78° = 1.056 + j 0.088 pu.
Va=Ves—Ip Zp + L Zc

=1.0 £0° - (0.4—j0.2) (0.08 +j 0.32) + (0.8 —j 0.1) (0.02 + j 0.08)
=0.928 —j 0.05=0.93 £-3.10° pu.

Current Phase angles
o, = angle of I;(=I,) = tan™ (%J == 183"

o, =angle of I,(=I,)= tan"(_o—oél] =-7.13°

cos(c, — o, )=0.98
Power factor angles
¢, =4.78° +18.43=23.21%cos ¢, = 0.92

, =7.13°=3.10° = 4.03% cos ¢, = 0.998

N.’R
; KK 1.0 %x0.02+ 0.6 % 0.08 +0.4* x0.03+ 0.6% x0.03

K Vi (cosg,)* (1.06)(0.920)?

11
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N,,’R
; KUK 1.0°%0.02+0.62x0.08 +0.4% x0.03+ 0.6* x0.03

K V,[*(cosg, ) (1.06)?(0.920)?

11

=0.0677 pu

=0.0677 x 51—0 =0.1354x102MW"!

Cos(o,-0,)
= N.N_.,R
" V[V, |(cos @, Ncos g,) ; L TRETR

_ 0.98
"~ (1.06)(0.93)(0.998)(0.92
=-0.00389 pu

=-0.0078x 10> MW

)[- 0.4%0.6x0.08 + 0.4x 0.4x0.03 + 0.6 X 0.6 0.03]

>-Nigy R
B, =-E

(—0.4)*0.08 +1.0% x 0.02 + 0.4> X 0.03 + 0.6* % 0.03
(0.93)*(0.998)*

=0.056pu = 0.112x10~2MW "'
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Unit Commitment

4.7. Introduction

The total load of the power system is not constant but varies throughout the day and reaches a
different peak value from one day to another. It follows a particular hourly load cycle over a day. There

will be different discrete load levels at each period as shown in Figure 4.1 below.

2,000 T T T T T

1,800 -

1,600 i | |

1,400

1,200

1,000

800

—— Load n MW

600 i i i 1 i
400

200 1 I 1 1 I

0 4 8 12 i6 20 24
———  Time in hours

Fig 4.1: Discrete levels of system load of daily load cycle

Due to the above reason, it is not advisable to run all available units all the time, and it is necessary
to decide in advance which generators are to startup, when to connect them to the network, the sequence in
which the operating units should be shut down, and for how long. The computational procedure for making
such decisions is called unit commitment (UC), and a unit when scheduled for connection to the system is

said to be committed.

The problem of UC is nothing but to determine the units that should operate for a particular load. To
‘commit’ a generating unit is to ‘turn it on’, i.e., to bring it up to speed, synchronize it to the system, and

connect it, so that it can deliver power to the network.
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4.8. Constraints in Unit Commitment

There are many constraints to be considered in solving the UC problem.

4.8.1. Spinning reserve

It is the term used to describe the total amount of generation available from all synchronized
units on the system minus the present load and losses being supplied. Here, the synchronized units

on the system may be named units spinning on the system.

Total generation output of all |
Spinning reserve =|synchronized units at a |—
particular time

Loadat that time +
Lossesat that time

L F . . .
Let Pgsp be the spinning reserve, = the power generation of the ; th synchronized unit, PD the

total load on the system, and pL the total loss of the system:

i
o B, =) B —(P,+P)
=
The spinning reserve must be maintained so that the failure of one or more units does not
cause too far a drop in system frequency. Simply, if one unit fails, there must be an ample reserve on

the other units to make up for the loss in a specified time period.

The spinning reserve must be a given a percentage of forecasted peak load demand, or it must
be capable of taking up the loss of the most heavily loaded unit in a given period of time. It can also
be calculated as a function of the probability of not having sufficient generation to meet the load.

The reserves must be properly allocated among fast-responding units and slow-responding
units such that this allows the automatic generation control system to restore frequency and quickly

interchange the time of outage of a generating unit.

Beyond the spinning reserve, the UC problem may consider various classes of ‘scheduled
reserves’ or off-line reserves. These include quick-start diesel or gas-turbine units as well as most
hydro-units and pumped storage hydro-units that can be brought on-line, synchronized, and brought
upto maximum capacity quickly. As such, these units can be counted in the overall reserve

assessment as long as their time to come up to maximum capacity is taken into consideration.
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Reserves should be spread well around the entire power system to avoid transmission system
limitations (often called ‘bottling’ of reserves) and to allow different parts of the system to run as

‘islands’, should they become electrically disconnected.

4.8.2. Thermal unit constraints

A thermal unit can undergo only gradual temperature changes and this translates into a time
period (of some hours) required to bring the unit on the line. Due to such limitations in the operation

of a thermal plant, the following constraints are to be considered.

Minimum up-time: During the minimum up-time, once the unit is operating (up state), it

should not be turned off immediately.

Minimum down-time: The minimum down-time is the minimum time during which the unit
1s in ‘down’ state, i.e., once the unit is decommitted, there is a minimum time before it can be

recommitted.

Crew constraints: If a plant consists of two or more units, they cannot both be turned on at

the same time since there are not enough crew members to attend to both units while starting up.

Start-up cost: In addition to the above constraints, because the temperature and the pressure
of the thermal unit must be moved slowly, a certain amount of energy must be expended to bring the

unit on-line and is brought into the UC problem as a start-up cost.

The start-up cost may vary from a maximum ‘cold-start’ value to a very small value if the unit

was only turned off recently, and it is still relatively close to the operating temperature.
Two approaches to treating a thermal unit during its ‘down’ state:

The first approach (cooling) allows the unit’s boiler to cool down and then heat back up to a

operating temperature in time for a scheduled turn-on.

The second approach (banking) requires that sufficient energy be input to the boiler to just

maintain the operating temperature.
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Cooling

Banking

£

Start-up cost

1 2 3 4 5 B
Hours ———=

Fig. 4.2: Time-dependent start-up costs
The best approach can be chosen by comparing the costs for the above two approaches.

Let CC be the cold-start cost (MBtu), C the fuel cost, CFthe fixed cost (includes crew
expenses and maintainable expenses), « the thermal time constant for the unit, Ctthe cost of

maintaining unit at operating temperature (MBtu/hr), and t the time the unit was cooled (hr).
Start-up cost when cooling = Cc (1 —e-t/a) C + CF;
Start-up cost when banking =Ct x t x C + CF.
Upto a certain number of hours, the cost of banking < cost of cooling is shown in Fig. 4.2.

The capacity limits of thermal units may change frequently due to maintenance or

unscheduled outages of various equipment in the plant and this must also be taken into consideration

in the UC problem.

4.8.3. Hydro-constraints

As pointed out already that the UC problem is of much importance for the scheduling of
thermal units, it is not the meaning of UC that cannot be completely separated from the scheduling of
a hydro-unit. The hydro-thermal scheduling will be explained as separated from the UC problem.

Operation of a system having both hydro and thermal plants is, however, far more complex as hydro-
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4.9,

plants have negligible operation costs, but are required to operate under constraints of water available

for hydro-generation in a given period of time.

The problem of minimizing the operating cost of a hydro-thermal system can be viewed as
one of minimizing the fuel cost of thermal plants under the constraint of water availability for hydro-

generation over a given period of operation.
4.8.4. Must run

It is necessary to give a must-run reorganization to some units of the plant during certain
events of the year, by which we yield the voltage support on the transmission network or for such

purpose as supply of steam for uses outside the steam plant itself.

4.8.5. Fuel constraints

A system in which some units have limited fuel or else have constraints that require them to
burn a specified amount of fuel in a given time presents a most challenging UC problem.

Unit Commitment—Solution Methods

The most important techniques for the solution of a UC problem are:

I.  Priority-list method.
ii.  Dynamic programming (DP) method.

iii.  Lagrange’s relaxation (LR) method.

Now, the priority-list method and the DP method are discussed here.

4.9.1. Priority list method

It is the simplest unit commitment solution which consists of creating a priority list of units.
Full load average production cost= Net heat rate at full load X Fuel

Cost Assumptions:

1. No load cost is zero
2. Unit input-output characteristics are linear between zero output and full load
3. Startup costs are a fixed amount

4. Ignore minimum up time and minimum down time
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Steps to be followed

1. Determine the full load average production cost for each units

2. Form priority order based on average production cost

3. Commit number of units corresponding to the priority order

4. Calculate Pgi, Ps2 ,Pen from economic dispatch problem for the feasible combinations only.

5. For the load curve shown, Assume load is dropping or decreasing, determine whether dropping
the next unit will supply generation & spinning reserve. If not, continue as it is If yes, go to the
next step.

6. Determine the number of hours H, before the unit will be needed again.

7. Check H< minimum shut down time. If not, go to the last step If yes, go to the next step.

8. Calculate two costs, one is the Sum of hourly production for the next H hours with the unit up
and second one is the Recalculate the same for the unit down + startup cost for either cooling or
banking.

9. Repeat the procedure until the priority.

1. No need to go for N combinations

2. Take only one constraint

3. Ignore the minimum up time & down time

4. Complication reduced

Demerits:

1. Startup cost are fixed amount

2. No load costs are not considered

4.9.2. Dynamic-Programming Solution:

Dynamic programming has many advantages over the enumeration scheme, the chief

advantage being a reduction in the dimensionality of the problem. Suppose we have found units in a

system and any combination of them could serve the (single) load.

order is imposed, there are only four combinations to try:

There would be a maximum of 24 - 1 = 23 combinations to test. However, if a strict priority

Department of EEE, SJBIT

27



Power System Analysis-2 (18EE71) 2021-22

e Priority 1 unit
e Priority 1 unit + Priority 2 unit
e Priority 1 unit + Priority 2 unit + Priority 3 unit

e Priority 1 unit + Priority 2 unit + Priority 3 unit + Priority 4 unit

The imposition of a priority list arranged in order of the full-load average cost rate would result in a

theoretically correct dispatch and commitment only if:

1. No load costs are zero.

2. Unit input-output characteristics are linear between zero output and full load.
3. There are no other restrictions.

4. Start-up costs are a fixed amount.

In the dynamic-programming approach that follows, we assume that:

1. A state consists of an array of units with specified units operating and

2. The start-up cost of a unit is independent of the time it has been off-line

3. There are no costs for shutting down a unit.

4. There is a strict priority order, and in each interval a specified minimum the rest off-line. (i.e., it

is a fixed amount).amount of capacity must be operating.

A feasible state is one in which the committed units can supply the required load and that meets the

minimum amount of capacity each period.

Forward DP Approach:

One could set up a dynamic-programming algorithm to run backward in time starting from the final
hour to be studied, back to the initial hour. Conversely, one could set up the algorithm to run
forward in time from the initial hour to the final hour. The forward approach has distinct advantages
in solving generator unit commitment. For example, if the start-up cost of a unit is a function of the
time it has been off-line (i.e., its temperature), then a forward dynamic-program approach is more
suitable since the previous history of the unit can be computed at each stage. There are other
practical reasons for going forward. The initial conditions are easily specified and the computations
can go forward in time as long as required. A forward dynamic-programming algorithm is shown
by the flowchart given in fig 4.4. The recursive algorithm to compute the minimum cost in hour K

with combination | is
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Feost(K, )= Min[Peost(K, 1) +Scost(K-1, L:K, 1) +Fcost(K-1,L)]

Feost(K, 1) = least total cost to arrive at state (K, I)

Peost(KI, ) = production cost for state( K 1)

Scost(K - 1, L: K, I)=transition cost from state (K - 1, L) to state(K , 1)

State (K, 1) is the Zth combination in hour K. For the forward dynamic programming approach, we

define a strategy as the transition, or path, from one state at a given hour to a state at the next hour.

Note that two new variables, X and N, have been introduced
X = number of states to search each period

N = number of strategies, or paths, to save at each step.

These variables allow control of the computational effort (see below Figure 4.3). For n complete

enumeration, the maximum number of the value of X or N is 2" — 1.

] L ] L]
interval Interval Interval
K-1 K K+1

Fig 4.3: Restricted search paths in DP algorithm withN =3 and X =5
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START

!

K=

Y \

FCOST (K, 1) = MIN {PCOST (K, 1) + SCOST (K - 1, L: K, I}]
(L}

DO FOR
b X = ALL STATES | IN ==t
Y PERIOD K

Y

K=K+1

i

{Li= “N" FEASIBLE STATES IN
INTERVALK -1

Y

FCOST (K, |) = MIN [PCOST (K, I) +
{L}
SCOST{K -1, L: K, 1) + FCOST (K - 1, L))

DO FOR ALL X =
STATES | IN PERIOD K ™

Y

SAVE N LOWEST
COST STRATEGIES

NO *

\K =M, LAST HOUR ?

1\'58

TRACE OPTIMAL SCHEDULE

l

STOP

Fig 4.4: Flow chart of Unit commitment via forward dynamic programming
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Module 5

Symmetrical Fault Analysis & Power System Stability
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5.1. Z Bus Formulation by Step by Step Building Algorithm

The bus impedance matrix is the inverse of the bus admittance matrix. An alternative method is
possible, based on an algorithm to form the bus impedance matrix directly from system parameters and the
coded bus numbers. The bus impedance matrix is formed adding one element at a time to a partial network
of the given system. The performance equation of the network in bus frame of reference in impedance form

using the currents as independent variables is given in matrix form by

Ebr:s = [me-.i ]Ibus

When expanded so as to refer to a n bus system, (9) will be of the form

E =Zyly+Zply +eoet Zyd ot Zy 1

Int n

kn~ n

E, =Z, 0, +Zdy + ot Zy I+ Z, I

E =Z I, +Z 0, + o Z I+t Z, I (10)

nl nk moon

Now assume that the bus impedance matrix Zbus is known for a partial network of m buses and a
known reference bus. Thus, Zbus of the partial network is of dimension mxm. If now a new element
is added between buses p and g we have the following two possibilities:

() p is an existing bus in the partial network and q is a new bus; in this case p-q is a branch added to
the p-network as shown in Fig 1a, and

(i) both p and g are buses existing in the partial network; in this case p-q is a link added to the p-network
as shown in Fig 1b.

e —
2.1
Partial
Network
p * o
q
ZBUS 1t
m-—t+——
0 | [ Ref.

Fig 1a. Addition of branch p-q
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- —
2.1
Partial
Network
p—
ZBUS q —
m—|——
0 | —F&=_ Ref

Fig 1b. Addition of link p-q

If the added element ia a branch, p-g, then the new bus impedance matrix would be of order m+1, and
the analysis is confined to finding only the elements of the new row and column (corresponding to bus-q)
introduced into the original matrix. If the added element ia a link, p-g, then the new bus impedance matrix
will remain unaltered with regard to its order. However, all the elements of the original matrix are updated to
take account of the effect of the link added.

5.1.1. Addition of a Branch

Consider now the performance equation of the network in impedance form with the added branch p-

g, given by
E, _le Zy - le L Z]q__I]_
Ez ZE] Zzz Zzp sz qu Iz
E, \=|Zp Zpo = Zp o Zpw Zy |1, (11)
Em Zml Zm’z Tt mp T me Zm’q Im
E, | Za Ly v Ly 2, 9 || "a |

It is assumed that the added branch p-g is mutually coupled with some elements of the partial
network and since the network has bilateral passive elements only, we have

Vector ypg-rs is not equal to zero and Zij= Zji " i,j=1,2,...m,q (12)
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To find Zqi:

The elements of last row-g and last column-q are determined by injecting a current of 1.0 pu at the bus-i and

measuring the voltage of the bus-q with respect to the reference bus-0, as shown in Fig.2. Since all other bus

currents are zero, we have from (11) that

Ek=2zkili=zki"k=1,2,...i......p,....m, ( (13)
Hence, Eq=Zqi;Ep="Zpi.........
Also, Eq=Ep -vpq ; so that Zqi = Zpi - vpq "1 =1, 2,...1....... p,....m, q (14)

To find vpq:

In terms of the primitive admittances and voltages across the elements, the current through the elements is

given by
Ipq _ y Papqg y Pgrs VPG
e - — (13)
IJ‘.S‘ JJ"S,pq IJ".S',]"S v?‘S
1 el
21
Partial
Network
V
ot Pq b
p — — C—————————————
q
i
ZBUS
Li=1pu
m _|
O | T Ref
Fig.2 Calculation for Zqi
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where i is current through element p-g

i .is vector of currents through elements of the partial network

v, 18 voltage across element p-g

Y pg.pq 18 S€If —admittance of the added element

¥ pers 18 the vector of mutual admittances between the added elements p-q and

elements r-s of the partial network.

v is vector of voltage across elements of partial network.
Y,s.pq 18 transpose of y .

¥ 5.1 18 the primitive admittance of partial network.

Since the current in the added branch p-q, is zero, im = 0. We thus have from (15),

i.vq = Ypa.pg¥pag + ypq,rsﬁrs =0 (16)
VooV
Solving, v, = _Yrars¥rs or
yP‘l’Pq
y 7S (Er . Es )
Y (17)
qu’Pq

Using (13) and (17) in (14), we get

o ypq,rs (Zn i Zsi)

qu,P‘I

Z.=7Z

qi pi

i=12...mi#gqg (18)

To find zqq:
The element Zyq can be computed by injecting a current of 1pu at bus-q, I; = 1.0 pu.

As before, we have the relations as under:
Ev=Zyq Ig= 74 VK =152 ki Ponim, q (19)
Hence, Eq=Zyq; Ep=7Zpq ; Also, Eq=E; - Vpq; 50 thatZgq =7Zpq - Vg (20)

Since now the current in the added element is i,,=—1,=-10,we have from (15)

IP‘I = ypq,pqqu + ypqusv"s = _1
. Y pgrsV,
Solving, v, =-1+-2"—

qu-Pq
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y. . \E .=E
yPG':P'-?
Using (19) and (21) in (20), we get
I+ ?pq,n (Zr ™ qu]
Z =Z, ¥ (22)

qu:Pfi'

Special Cases

The following special cases of analysis concerning ZBUS building can be considered with respect to the

addition of branch to a p-network.

Case (a): If there is no mutual coupling then elements of y, . are zero. Further, if p
is the reference node, then E,=0. thus,

Z5=0 i=12..m:i+q
And Zpq=0.
Hence, from (18) (22) Zgi=0 i=12...mi#qg
And Z 0 = Zpang ' (23)

Case (b): If there is no mutual coupling and if p is not the ref. bus, then, from (18)

and (22), we again have,

Z:Z . i:l,2....m;f¢q

qi pi?

Z‘I‘? - ZP‘J' +z (24)

Pq.Pq

5.1.2. Addition of a Link

Consider now the performance equation of the network in impedance form with the added link p-I, (p-I being

a fictitious branch and | being a fictitious node) given by

E] _le le le Z]m Zlq__ 1_
Ez Zm Zzz Zzp Zm qu Iz
E,\=\Z, Z, - Z, - Z, Z,|1, (25)
Em ml m2 mp mm mg Im
_Ei N _Zﬂ Zyp - Ly o Ly 2y __I; |
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It is assumed that the added branch p-g is mutually coupled with some elements of the partial network and
since the network has bilateral passive elements only, we have

Vector ypq.rs is not equal to zero and Zs;= Z; Vv i,j=1,2,...m,L (26)

To find Zli:

The elements of last row-I and last column-I are determined by injecting a current of 1.0 pu at the bus-i and
measuring the voltage of the bus-q with respect to the reference bus-0, as shown in Fig.3. Further, the current

in the added element is made zero by connecting a voltage source, el in series with element p-q, as shown.
Since all other bus currents are zero, we have from (25) that

Ex=Zn1i =7y V. kK= 1:20ivemipaiam | (27)
Hence, e=E =75 ; E,=Zy; Ey=7Z;

.........

Also, e=Ep-Eq-Vpq:

So that Zy = Zpi- Zgi- Vpq V i=12,...0....p....Q,...m, #l (28)

To find Vpq:

In terms of the primitive admittances and voltages across the elements, the current through the elements is
given by

Lo | | Ypipr  Ypirs | Vor

- - - (29)
rs }J"S,pf ) J;‘&TS vr.s
|
2 _|
Partial B
Network p
Vpl
| €]
i
ZBUS

Fig.3 Calculation for Zjy
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where i, is current through element p-q
i _ is vector of currents through elements of the partial network

v_, 1S voltage across element p-q

pl
Y, pr 18 self — admittance of the added element

Y o1+ 18 the vector of mutual admittances between the added elements p-g and

elements r-s of the partial network.

v _is vector of voltage across elements of partial network.
Yys,pt 18 transpose of y, .

¥ 5., 18 the primitive admittance of partial network.

Since the current in the added branch p-l, is zero, ip, = 0. We thus have from (29),

ipl = Ypu1,ptVpi 1 ?F,’,s\_zm =0 (30)
; Y orrs?,
Solving, V= Jplrs’rs 5
Y1, pi
yPI,YS(Er = ES)
Vgl ——— -
Y pl.pl
However,

ypl,rs - ypq,rs

And Yotpt = Ypa.pq (32)
Using (27), (31) and (32) in (28), we get

ypq,rs (Zn' = Zﬂ)

yP‘I,P‘I

pi gi

i=12...mizl (33)

To find Z:
The element Z; can be computed by injecting a current of 1pu at bus-1, I; = 1.0 pu. As

before, we have the relations as under:
Ex=Zuli=Zy 7 A0 s S L (OO, N - S 1 ) | (34)
Hence, e=Ei=Zy; E,=7Zy ;

Also, e=E;-Eq-vp:
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7 i (Zﬂ = Zsl)

qu,Pq

~Z

ql

Zy=Z (38)

pl

Special Cases Contd....

The following special cases of analysis concerning Zgys building can be considered

with respect to the addition of link to a p-network.

Case (c): If there is no mutual coupling, then elements of ?M,” are zero. Further, if p

is the reference node, then E;=0. thus,

Z,=-Z,, i=12..mi#l

qgi’

Zy= o ¥ oo (39)
From (39), it is thus observed that, when a link is added to a ref. bus, then the situation is similar to adding a

branch to a fictitious bus and hence the following steps are followed:

1. The element is added similar to addition of a branch (case-b) to obtain the new matrix of order m+1.

2. The extra fictitious node, | is eliminated using the node elimination algorithm.

Case (d): If there is no mutual coupling, then elements of pq rs y , are zero. Further, if p is not the

reference node, then

Ly =2pi- Ly
Zn=Zy—Zq — Zpopq
=Zpp+ Lgq— 2 Zpgt+ Zpgpq (40)

Modification of Zbus for Network Changes

An element which is not coupled to any other element can be removed easily. The Zbus is modified as
explained in sections above, by adding in parallel with the element (to be removed), a link whose impedance
is equal to the negative of the impedance of the element to be removed. Similarly, the impedance value of an
element which is not coupled to any other element can be changed easily. The Zbus is modified again as
explained in sections above, by adding in parallel with the element (whose impedance is to be changed), a
link element of impedance value chosen such that the parallel equivalent impedance is equal to the desired

value of impedance. When mutually coupled elements are removed, the Zbus is modified by introducing
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appropriate changes in the bus currents of the original network to reflect the changes introduced due to the

removal of the elements.

5.1.3. Examples on ZBUS building

Example 1: For the positive sequence network data shown in table below, obtain ZBUS by building

procedure.
Pos. seq.
SLNo. | P9 | reactance
(nodes) .
in pu
| 0-1 0.25
2 0-3 0.20
3 1-2 0.08
4 2-3 0.06
Solution:

The given network is as shown below with the data marked on it. Assume the elements to be added as per

the given sequence: 0-1, 0-3, 1-2, and 2-3.
@ 0.06 @
gl

0.08

0.20

OO

Fig. E1: Example System

2
T

Consider building ZBUS as per the various stages of building through the consideration of the corresponding

partial networks as under:
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Step-1: Add element-1 of impedance 0.25 pu from the external node-1 (q=1) to internal ref. node-0 (p=0).
(Case-a), as shown in the partial network;

P-network

Zeus =[] (.25

OO

Zpus = 1025

Step-2: Add element-2 of impedance 0.2 pu from the external node-3 (q=3) to internal ref. node-0 (p=0).

(Case-a), as shown in the partial network;

P-networlk @

ZBUSHJ @ "2 @

1 3

o 10251 0
Z.

BLS 30 (02
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Step-3: Add element-3 of impedance 0.08 pu from the external node-2 (q=2) to internal node- 1 (p=1).
(Case-b), as shown in the partial network;

P-network 0.08
Z pus'> N @
1 3 2
1 11025 0 [0.25
Zpus''= 3| 0 [02] 0

b2
=
[~
N
=
=
fd
]

Step-4: Add element—4 of impedance 0.06 pu between the two internal nodes, node-2 (p=2) to node-3
(g=3). (Case-d), as shown in the partial network;

P-network @ 0.06

Z pus

025] 0 [025]025

1
zo@w_ 30 Jo2] 0 [-02
BUS = L7025 0 033033
(025 [-0.2 1033059
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The fictitious node | is eliminated further to arrive at the final impedance matrix as under:

1 3 2

0.1441 ] 0.0847 1 0.1100

1
Zyus ™ = 3[0.0847 | 0.1322 ] 0.1120
2101100 | 0.1120 | 0.1454
1 2 3 4 5
12100102
21012101210
Zpus= 3(0]0(2]0(0
41012101310
502(010(101(3
@ 1.0 pu @
Zpus™” FaY
p- Network @
10}
@:
Ref.
-
Zpus® O pu
p-Network@ @
(6)
Zpus" g
p- Network @
@ 2.0 pu @
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P | ()

p- Network

@ 2.0 pu @
ZausV =1 1]
p- Network @ 2.0 pu (:}

2.0 pu

1.0 pu

© Owp @

2.0 pu
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Solution: The specified system is considered with the reference node denoted by node-0. By its inspection,
we can obtain the bus impedance matrix by building procedure by following the steps through the p-

networks as under:

Stepl: Add branch 1 between node 1 and reference node. (q =1, p = 0)

pus =[ ]

p-network @

1
anl:ls(lj = 1[.}'[:] 1]

Step2: Add branch 2, between node 2 and reference node. (q =2, p = 0).

p-network

1 2
01 0

E j—
M oal 0 j015

Step3: Add branch 3, between node 1 and node 3 (p=1,9=3)

Department of EEE, SJBIT 15



Power System Analysis-2 (18EE71) 2021-22

D @
3
p-network =

(o)

1 2 3
/01 o joi1
Z,, =2 0 joi15 0
3ljo1 o 05

Step 4: Add element 4, which is a link between node 1 and node 2. (p=1,q=2)

Zauss?

D

p-network

. CIERR

1 3 i

1] o1 o Jo1 o
L, _2| o Jjois 0 - 015
3 o1 o Jjos o

iljo1 — 015 jo1  jo8s

Now the extra node-I has to be eliminated to obtain the new matrix of step-4, using the algorithmic relation:
Yijlle“' — YijOId — Yil:l Ytlj ! Ylll:l hvd i1] =1,2, 3.

1 2 3

FO.08823 001765 j0.08823
Zaw = | JO.O1765  j0.12353 j0O.01765
F0.08823 0.01765 j0.48823
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Step 5: Add link between node 2 and node 3 (p = 2, q=3)

Zrus™

Pnetwork

9130

Z,=Z, —Z, = j0.01765— j0.08323 = — j0.07058
Z, =2, - Zy = j012353- j0.01765 = ;0.10588

Lp=Zy—2Z5=J001765- jO.48823= - 7047058
Lyp=Zy—Zy+Zyqy
= j0. 10588 - E;—j0,4?058}+j0,4 = j0.97e46
Thus, the new matrix is as under:

1 2 3 1

1[ /008823 ;j0.01765 7008823 - j0.07058
2| jO.O1765 j0.12353 /001765  j0.10588
3| j008S23  jO.01765 048823 - 047058
[|-jO.O7058 j0.10588 - j0.47058 0.97646

274

Node [ is eliminated as shown in the previous step:

1 yA 3

11 j0.08313 ;0.02530 ;0.05421
Z,, =2 j0.02530 ;j0.11205 j0.06868
3] j0.05421 ;0.06868 ;0.26145

Further, the bus admittance matrix can be obtained by inverting the bus impedance matrix as under

1 2 3
1[- 41667 jlee67 2.5

v, =[z,]"=2| jless7 - jl0833 25
3L j2s 25 =50

As a check, it can be observed that the bus admittance matrix, Ygus can be also be obtained by the rule of

inspection to arrive at the same answer.
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Power System Stability

5.2. Numerical Solution of Swing Equation by Point by Point method

There are several sophisticated methods for solving the swing equation. The step-by-step or point-by-
point method is conventional, approximate but well tried and proven method. This method determines the

changes in the rotor angular position during a short interval of time.

Consider the swing equation:

The solution §(t) is obtained at discrete intervals of time with interval spread of At uniform throughout.
Accelerating power, PA and change in speed, which are continuous function of time and are described as
below,

1. The accelerating power PA computed at the beginning of an interval is assumed to remain constant

from the middle of the preceding interval to the middle of the interval being considered, as illustrated

in Fig.1.
1 Paj=-3 ‘?\ I
Y ! ASSUMED ACTUAL
= Sl By ok
: YRR N T
™ 3 -~
g Pun ; g% ASSUMED
g | :
: | |
A ]
]
I i Mooy T - e i
n=-2 n=1 n ]: - é <
at vAl ———=
(a) (b}
&n
! i .
ui abn
g i
i
Adn=1
S sn-2 -—-1----,-7/}'
T ]
n;z n=1 n
— at —f— it —s]
tat
(c)
Fig. 1
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2. The angular rotor velocity ®’, i.e., do/dt (over and above synchronous velocity ®0) is assumed to
remain constant throughout any interval at the value computed for the middle of the interval, as
illustrated in Fig.1.

In Fig.1 the numbering on t/At axis pertains to the end of intervals.

The equation for accelerating power at the end of the (n — 1)™ interval or for nth interval can be written as
P.-\{n - T PS - Pm:u; sin E:’n— I

where &, _ 1 has been earlier calculated.

The change in velocity caused due to Pa (n- 1) assumed to remain constant over At from (n — 3/2) to (n —1/2),

Aw’ -1 = Wy 12 -'m:r"l-'l

]
Ar
=™ Patn-1

The change in rotor angle & during (» — 1)th interval,
ﬁaﬂ—'l o Eﬂ‘-l v Eﬂ_: = .ﬂ.fm'

and during the sth interval, A8, =&, - 6, _, = Arw’

Subtracting Eq. (7.55) from Eq. {7.56) we have

F — & ar 1 .
Bﬁn—.ﬁﬁ"_' = 'ﬁ'r(mn-% mu-%) = LﬁLFM"-” = from Eq. Y S |
‘ . _ {Arn)
mn“'-l,'-mn—-';- M Pan-n

Pagn=1

or AR = Al e R e 2

n A= M (l&”
5B, =B, + a8,

The above process of computation is repeated to obtain Pan) Adn + 1land on + 1. The time solution in
discrete form is thus carried out over the desired length of time, usually 0.05 second. Actual swing curve can
be plotted by drawing a smooth curve through discrete values, as shown in Fig.1.

The accuracy of the solution depends upon the time duration of the intervals. As the time interval is reduced
the computed swing curve approaches the true. Usually At = 0.05 second provides good accuracy in results.
The occurrence or removal of a fault or initiation of any switching action causes a discontinuity in
accelerating power.

There are three possibilities of occurrence of discontinuity:

(i) The discontinuity occurs at the beginning of the nth interval,

(i) The discontinuity occurs at the middle of an interval.

(i) The discontinuity occurs at some time other than the beginning or the middle of an interval.
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In the first case, the average of the values of accelerating power P before and after discontinuity should be
used. Thus in determining the increment of angle occurring during the first interval after the occurrence of
fault at t = 0, above becomes

Adi = Ppet+ /12M (At)2

whereas Pa-t+ is the accelerating power immediately after the occurrence of the fault. Since immediately
before the occurrence of the fault the system is in steady state, Pa-- = 0 and 9o is of known value.

If the fault is cleared at the beginning of the nth interval, in calculation for this interval the value of

Pan-1)should be taken as

1
E[Pﬁm—ln‘ ¥ PM,,_”- ]

where Pa (r-1)- Is the accelerating power immediately before clearing and Pa (- 1)t is that immediately after
clearing the fault.

In second case, i.e., when the discontinuity occurs at the middle of an interval, no special procedure is
required. The increment of the angle during such an interval is computed, as usual, from the value of P, at

the beginning of the interval, i.e.,

Pa = Ps — output during the fault

Where-as at the beginning of the interval following clearing of the fault, P4 is given as
Pa = Ps — output after clearance of fault.

To compute accelerating power Pa in the third case, a weighted average value of Pa before and after the
discontinuity may be used. It is found in practice that such a precise computation of accelerating power P4 is
not required as the time interval used in computation is so short that it is sufficiently accurate to consider the
discontinuity to occur at the beginning or at the middle of an interval and accelerating power P is computed

as outlined above in the first two cases.
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5.3. Range-Kutta Method

In Range - Kutta method, the changes in dependent variables are calculated from

a given set of formulae, derived by using an approximation, to replace a truncated

Taylor’s series expansion. The formulae for the Runge - Kutta fourth order

approximation, for solution of two simultaneous differential equations are given below;

Given ﬂ =f (X, y,1)
dt

dy
E = f)" (x-: Y, t)

Starting from initial values Xo, yo, to and step size h, the updated values are

X1=Xg+ é (k1+2k2 +2k3+k4)

Y1=Yo+ é (14 + 21 + 215 + 14)
where k; =15 (X0, Yo .to) h

k [ h
kp = fx [.1‘0 +?‘ ,y0+?',r0 +E) h

2

k [ h
k3 = fx (xﬁ +72 , Yo+ 201, +?J h

ki=Ty (xo+Kks,yo+ 3, to+h)h
I =1y (Xo, Yo, to) h

k [ h
L=fy|x,+—L, y,+—,t,+— | h
2 Y(ﬂ > Yo 5o 2)

k,

[ h
=fy | xg+—=, y,+—=,1,+— | h
3 Y(D 5 Yo P ]

2
l4= fy(}(g+k3*yg+13,t0+ h) h

The two first order differential equations to be solved to obtain solution for the swing

equation are:

dé _

e )]
dt
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do _F, B, — P, sind
d M M
Starting from initial value &y, o, to and a step size of At the formulae are as follows
ki = g At
e P —P__ sincﬁ'ﬂ] Xi
i M
l;
k2 =@, + E At
. o
P —P__ sin(é‘n + —]J
2
I, = At
M
L
k3 = ﬂ')o + E At
- 5N
P —P__ sin(é‘u + —2)
2
I = At
M
ks = (00 + 13) At :
L= P —P__ sin (50 + k&, )} At
i M

8;=50+% [k1+2k2+2k3+k4]

0.)1=CD(}+% [l|+212+2]3+l4]

Example

Obtain the swing curve for previous example using Runge - Kutta method.

Solution:

8o = 27.82° = 0.485 rad.
mp=0.0rad/sec. (att=0)
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Choosing a step size of 0.05 s, the coefficient ky_ka, k3, kg and 1y, 15, 13, and 14 are

calculated for each time step. The values of 6 and @ are then updated. Table a gives the

coefficient for different time steps. Table b gives the starting values &g, wp for a time step

and the updated values 6, wy oblained by Runge - Kutta method. The updated values are

used as initial values for the next time step and process continued. Calculations are

illustrated for the time step t =0.2 s.
og=0.756
M = 0.0331 5%/ rad
g = 2.067
Pn=0.8
Pmax = 1.333 (after fault is cleared)
k1 =2.067%x0.05=0.103

| [0.3 — 1.333 sin (0.756)
1 =

% 0.05 =—0.173
0.0331 ]

ka= [2.067 - &;3] 0.05 = 0.099

0.8 —1.333 sin {0.756 + %)

Ir= x 0.05 =-0. 246

0.0331

0.246
k= [2.06? - T:| 0.05 = 0.097

0.099

0.8 —1.333 sin(ﬂ,?ﬁﬁ +

Iz= 2 J x 0.05 =-0. 244

0.0331

ks = (2.067 — 0.244) 0.05 = 0.091
| [0.3 —1.333 5in (0.756 + 0.097)
4‘.:

0.0331

o= 0.756 + r: [0.103 + 2 x 0.099 + 2 x 0.097 + 0.091] = 0.854

:| * 0.05 =-0. 308
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®1=2.067+% [-0.173 +2x-0.246 +2 x - 0. 244 - 0. 308] = 1.823

Now 6 = 0.854 and ® = 1.823 are used as initial values for the next time step. The

computations have been rounded off to three digits. Greater accuracy is obtained by

reducing the step size.

Table a : Coefficients in Runge - Kutta method
T ki Iy ko 1, k3 I3 K4 1y
0.0 0.0 0.764 | 0.019 | 0.764 | 0.019 | 0.757 | 0.038 | 0.749
0.05| 0.031 0.749 | 0.056 | 0.736 | 0.056 | 0.736 | 0.075 | 0.703
0.10 | 0.075 0.704 | 0.092 | 0.674 | 0.091 0.667 | 0.108 | 0.632
0.15| 0.108 |-0.010| 0.108 |-0.094| 0.106 |-0.095| 0.103 |-0.173
0.20| 0.103 |-0.173 | 0.099 |-0.246| 0.097 |-0.244| 0.091 |-0.308
825 | 0.091 |-0.309| 0083 |-0.368| 0.082 |-0363| 0.073 |-0413
0.30| 0073 |-0413| 0.063 |-0.455| 0.061 |-0.450| 0.050 |-0.480
0.35| 0.050 |-0.483| 0.038 |-0.510| 0.037 |-0.504| 0.025 |-0.523
0.40 | 0.025 |-0.523| 0012 |-0.536| 0.011 |-0.529|-0.001 | -0.534
0.45 |- 0.001 | —0.534 | -0.015 | - 0.533 | - 0.015 | - 0.526 | - 0.027 | - 0.519
0.50 | - 0.028 | —0.519 | —0.040 | —0.504 | — 0.040 | —0.498 | —0.053 | - 0.476

Table b: 8. ® computations by Runege - Kutta method

t Prax 8o N 01 01 o1
(sec) | (pu) | (rad) | rad/sec | rad | rad/sec | deg

0 | 1.714 | 0.485 0.0

0" | 0.630 | 0.485 0.0 0.504 | 0.759 | 28.87
0.05 | 0.630 | 0.504 | 0.756 |0.559 | 1.492 | 32.03
0.10 | 0.630 | 0.559 | 1.492 |0.650| 2.161 | 37.24
0.15 | 1.333 | 0.650 | 2.161 |0.756 | 2.067 | 43.32
0.20 | 1.333 | 0.756 | 2.067 | 0.854 | 1.823 | 48.93
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0.25 | 1.333 | 0.854 | 1.823 | 0.936| 1.459 |53.63
0.30 | 1.333 | 0.936 | 1.459 |0.998 | 1.008 |57.18
0.35 | 1.333 1 0998 | 1.008 | 1.035| 0.502 | 59.30
0.40 | 1.333 | 1.035 | 0.502 | 1.046 | —0.029 | 59.93
0.45 | 1.333 | 1.046 | —0.029 | 1.031 | —0.557 | 59.07
0.50 | 1.333 | 1.031 | - 0.557 | 0.990 | — 1.057 | 56.72
Note: &, mp indicate values at beginning of interval and 6y, @; at end of interval. The
fault is cleared at 0.125 seconds. .. Ppax = 0.63 at t = 0.1 sec and Ppax = 1.333 at t = 0.15
sec, since fault is already cleared at that time. The swing curves obtained from modified
Euler’s method and Runge - Kutta method are shown in Fig. It can be seen that the two
methods yield very close results.
65 T T T T T T
+ - Modiified Euler's Method
60 o -Runge-Kutta Method B
55 -
50 .
g
fu ;
40 y
a5 -
80 .
25 | | | 1 | |
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Time (seconds)
Fig: : Swing curves with Modified Euler’ and Runge-Kutta methods
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